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PREFACE

TO THE THIRD VOLUME,

X HE beneficial improvements lately made, and still making,

in the plan of the scientific education of the Cadets, in the

l^oyal Military Academy at Woolwich, having rendered a

further extension of the Mathematical Course adviseable, I

was honoured with the orders of his Lordship the Master

General of the Ordnance, to prepare a third volume, in addi-

tion to the two former volumes of the Course, to contain

such additions to some of the subjects before treated of in

those two volumes, with such other new branches of military

science, as might appear best adapted to promote the ends of

this important institution. From my advanced age, and the

precarious state ofmy health, I was desirous of declining such

a task, and pleaded my doubts of being able, in such a state,

to answer satisfactorily his lordship's wishes. This difiiculty

however was obviated by the reply, that, to preserve a uni-

formity between the former and the additional parts of the

Course, it was requisite that I should undertake the direction

of the arrangement, and compose such parts of the work as

might be found convenient, or as related to topics in which

I had made experiments or improvements ; and for the rest,

A I might
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I rnign': take to my assistance the aid of any other person I

might think proper. With this kind indulgence being en-

couraged to exert my best endeavours, I immediately an-

nounced my wish to request the assistance of Dr. Gregory of

the Royal Military Academy, than whom, both for his ex-

tensive scientific knowledge, and his long experience, I know

of no person more fit to be associated in the due performance

of such a task. Accordingly, this volume is to be considered

as the joint composition of that gentleman and myself, hav-

ing each of us taken and prepared, in nearly equal portions,

separate chapters and branches of the work, being such as,

in the compass of this volume, with the advice and assistance

of the Lieut. Governor, were deemed among the most useful

additional subjects for the purposes of the education esta-

blished in the Academy.

The several parts of the work, and their arrangement, are

as follow.-^In the first chapter are contained all the proposi-

tions of the course of Conic Sections, first printed for the use

of the Academy in the year 1787, which remained, after

those that were selected for the second volume of this Course

:

to which is added a tract on the algebraic equations of the

several conic sections, serving as a brief introduction to the

algebraic properties of curve lines.

The 2d chapter contains a short geometrical treatise on the

elements of Isoperimetry and the maxima and minima of

surfaces and solids; in which several propositions usually in-

vestigated by fluxionary processes are efi'ected geometrically

;

and in which, indeed, the principal results deduced by Thos.

Simpson, Horsley, Legendre, and Lhuillier are thrown into

the compass of one short tract.

The 3d and 4th chapters exhibit a concise but compre-

hensive view of the trigotiometrical analysis, or that in which

the chief theorems of Plane and Spherical Trigonometry are

deduced algebraically by means of what is commonly deno-

minated
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minated the ylnthmetic of Sines. A comparison of the

modes of investigation adopted in these chapters, and those

pursued in that part of the second volume of this course

which is devoted to Trigonometry, will enable a student to

trace the relative advantages of the algebraical and geome-

trical methods of treating this useful branch of science. The

fourth chapter includes also a disquisition on the nature and

measure of solid angles, in which the theory of that peculiar

class of geometrical magnitudes is so represented, as to render

their mutual comparison (a thing hitherto supposed impos-

sible except in one or two very obvious cases) a matter of

perfect ease and simplicity.

Chapter the fifth relates to Geodesic Operations, and that

more extensive kind of Trigonometrical Surveijing which is

employed with a view to determine the geographical situa-

tion of places, the magnitude of kingdoms, and the figure of

the earth. This chapter is divided into two sections : in the

first of which is presented a general account of this kind of

surveying; and in the second, solutions of the most import-

ant problems connected with these operations. This portion

of the volume it is hoped will be found highly useful ; as

there is no work which contains a concise and connected ac-

count of this kind of surveying and its dependent problems ;

and it cannot fail to be interesting to those who know how
much honour redounds to this country from the great skill,

accuracy, and judgment, with which the trigonometricai

survey of England has long been carried on.

In the 6th and 7th chapters are developed the principles

of Polygonoynetrij, and those which relate to the Division of

lands and other surfaces, both by geometrical construction

and by computation.

The 8th chapter contains a view of the nature and solu-

tion of eqimtiojis in general, with a selection of the best rules

for equations of different degreei. Chapter the 9th is devoted

to
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to the nature and properties of curves, and the construction

of equations. These chapters are manifestly connected, and

show how the mutual relation subsisting between equations

of different degrees, and curves of various orders, serve for

the reciprocal illustration of the properties of-both.

In the 10th chapter the subjects of Fluents ^nd Fluxional

equations are concisely treated. The various forms of Fluents

comprised in the useful table of them in the 2d volume, are

investigated : and several other rtiles are given ; such as it is

believed will tend much to facilitate the progress of students

in this interesting department of science, especially those

which relate to the mode of finding fluents by continuation.

The 11th chapter contains solutions of the most useful

problems concerning the maximum effects of viachines in

motion; and developes those principles which should con-

stantly be kept in view by those who would labour beneficially

for the improvement of machines.

In the ICth chapter will be found the theory of the pres-

sure of earth andjiuuls against walls and fortifications j and

the theory which leads to the best construction of powder

7nagazines with equilibrated roofs. ^

The 13th chapter is devoted to that highly interesting

subject, as well to the philosopher as to military men, the

theory and practice ofgunnery . Many of the difficulties at-

tending this abstruse enquiry are surmounted by assuming

the results of accurate experiments, as to the resistance expe-

rienced by bodies moviiig through the air, as the basis of

the computations. Several of the most useful problems are

solved by means of this expedient, with a facihty scarcely to

be expected, and with an accuracy fiir beyond our most san-

guine expectations.

The 14th and last chapter contains a promiscuous but ex-

tensive collection of problems in statics, dynamics, hydro-

staticSy hj/draulicsj projectiles, &c, &c ; serving at once to

exercise
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exercise the pupil in the various branches of mathematics

comprised in the course, to demonstrate their utility especially

to those devoted to the military profession, to excite a thirst

for knowledge, and in several important respects to gratify it.

This volume being professedly supplementary to the pre-

ceding two volumes ofthe Course, may best be used in tuition

by a kind of mutual incorporation of its contents with those

of the second volume. The method of efFecting this will,

of course, vary according to circumstances, and the precise

employments for which the pupils are destined : but in ge-

neral it is presumed the following may be advantageously

adopted. Let the first seven chapters be taught immediately

after the Conic Sections in the 2d volume. Then let the

substance of the 2d volume succeed, as far as the Practical

Exercises on Natural Philqsophy, inclusive. Let the 8th and

9th chapters in this 3d vol. precede the Treatise on Fluxions

in the 'id •, and when the pupil has been taught the part re-

lating to Jiuents in that treatise, let him immediately be con-

ducted through the 10th chapter of the 3d volume. After

he has gone over the remainder of the Fluxions with the

applications to tangents, radii of curvature, rectifications,

quadratures, &c, the 1 1th, l'.ith, and 13th chapters of the

3d vol. should be taught. The problems in the 14th chap-

ter must be blended with the practical exercises at the end

of the 2d volume, in such manner as shall be found best

suited to the capacity of the student, and best calculated to

ensure his thorough comprehension of the several curious

problems contained in those portions of the v/ork.

In the composition of this 3d volume, as well as in that of

the preceding parts of the Course, the great object kept con-

stantly in view has been ut'dityy especially to gentlemen in-

tended for the Military Profession. To this end, all such

investigations as might serve merely to display ingenuity or

talent, without any regard to practical bcncHt, have been care-

Adly



Vm PREFACE.

fully excluded. The student has put into his hands the tvre

powerful instruments of the ancient and the modern or sub-

lime geometry ; he is taught the use of both, and their rela-

tive advantages are so exhibited as to guard him, it is hoped,

from any undue and exclusive preference for either. Much
novelty of matter is not to be expected in a work like this

;

though, considering its magnitude, and the frequency with

which several of the subjects have been discussed, a candid

reader will not, perhaps, be entirely disappointed in this re-

spect. Perspicuity and condensation have been uniformly

aimed at through the performance : and a small clear type,

with a full page, have been chosen for the introduction of a

large quantity of matter.

A candid public will accept as an apology, for any slight

disorder or irregularity, that may appear in the composition

and arrangement of this Course, the circumstance of the dif-

ferent volumes having been prepared at widely distant times,

and with gradually expanding views. But, on the whole, I

trust it will be found that, with the assistance of my friend

and coadjutor in this supplementary volume, I have now

produced a Course of Mathematics, in which a greater variety

of useful subjects are introduced, and treated with perspicuity

and correctness, than in any three volumes of equal size in

any language whatever.

CIIA. HQTTON.
Mai/, 1811.
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CHAPTER I.

CONTINUATION OF THE CONIC SECTIONS.

IN the year 1787 was published, by order of the Master
General of the Ordnance, for the use of the Royal Military
Academy, a volume of miscellaneous exercises, which had,
for many preceding years, been employed in manuscript, in

the education of the cadets in the academy. The first and
principal article in the contents of that volume, was an ex-
tensive geometrical treatise on Conic Sections, treated in a

new and a more methodical, as well as easier way, than had
been usual.—In the year 1798, when the 2d volume of the
Academical Course was first published, by order of the Mas-
ter General also, the leading propositions of that treatise on
Conic Sections were introduced into it.—And now, on the
further extension of the Course, by order of his lordship the

present Master General, the remaining propositions, of the
said first treatise of Conies, are introduced into this 3d
volume.

It will be observed that the theorems or propositions in this

volume, are numbered in the regular succession from those in

the 2d volume, in each of the three sections, commencing
here, in the third volume, with the number next following the
last in the 2d volume, so as to form these propositions in both

Vol. III. B those
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those volumes into a continued series. To each number also

will be found annexed, in the Indian figures inclosed in a

parenthesis, the number of the same proposition as it was

ijumbered in the first miscellaneous treatise of the year 1787.

The additional theorems are as follow.

SECTION I.

OF THE ELLIPSE.

THEOREM XII (5.)

The Difference between the Semi-transverse and a Line

drawn from the Focus to any Point in the Curve, is equal

to a Fourth Proportional to the Semi-transverse, the Dis-

tance from the Centre to the Focus, and the Distance from

the Centre to the Ordinate belonging to that Point of the

Curve.

That is,

AC — FE = CI, or FE = AI i

andyk — ac = cr, or^E = Bi.

Where ca : of : : CD : ci the 4<th

proportional to ca, cf, cd.

For, draw AG parallel and equal to ca the semi-conjugate j

and join CG meeting the ordinate DE in H.

Then, by theor. 2, ca^ : ag* : : ca" — cd'' : de* :

and, by sim. tri. ca',: AG' : : ca'' — cd'' : ag^ — dh' ;

consequently de^=: ag'' — dh^ = ca''— dh".

Also FD = CF ^CD, and fd'- izcf-— 2cf . cd+ cd*;

but by right-angled triangles, FD^ + PE^ = fe^ >

therefore fe'' = cf" + ca^ — 2cf . CD + cd'' — dh*.

But by theor. 4, ca' + cf* = ca"

and, by supposition, 2cf . cd = 2cA . ci

;

theref. fe^ = CA^ — 2ca . ci + cd^ — dh''.

But by supposition, CA* : CD' : : CF" or CA^ — AG* : ci* j

and, by sim. tri. ca'' : cd* : : ca* — ag* : CD* — dh'j
therefore - - ci*= cd* — dh*;
consequently - fe*=:ca*— 'Jca ci + CI^

And the root or side of this square is fe =: CA — CI =: Ai.

In the same manner is found/E = ca + ex = Ei. Q- e. d.

CoroL
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Carol. 1. Hence ci or CA — fe is a 4th proportional to

CA, CF, CD.

Carol. 2. And /e — fe = 2ci ; that is, the diiFerence

between two hncs drawn from tlie foci, to any point in the

curve, is double the 4th proportional to CA, cf, cd.

THEOREM XIII (1 l).

If a Line be drawn from eirher Focus, Perpendicular to a

Tangent to any Point of the C'lrve ; the Distance of their

Intersection from the Centre will be ec^ual to the Semi-

transverse Axis.

That is, if FP,//7

be perpendicular to

the tangent TP/),

then shall cp and
cp be each equal

to CA or CB.

For through the point of contact E draw fe, and fu
meeting fp produced in g. Then, the ^gep = Afep,
being each equal to the ^jEp^ and the angles at p being

right, and the side pe being common, the two triangles gep,

FEP are equal in all respects, and so GE =^ fe, and GP — FP.

Therefore, since fp = i^G, and Fc — 4f/> and the angle at

F common, the side cp will be = \fG or 4:AB, that is CPrrcA

or CB. And in the same manner cp = ca or CB. q.e.d.

Coral. 1. A circle described on the transverse axis, as a

diameter, will pass through the points P, p; because all the

lines ca, cp, c/j, cb, being equal, will be radii of the circle.

Coral. 2. CP is parallel to/E, and cp parallel to fe.

Carol. 3. If at the intersections of any tangent, with the

circumscribed circle, perpendiculars to the tangent be drawn,

they will meet the transverse axis in the two foci. That is,

the perpendiculars pf, ^'give tlie foci f,J\

THEOREM XIV (12).

The equal Ordinates, or the Ordinates at equal Distances

from the Centre, on the opposite Sides and Ends of an

Ellipse, have their Extremities connected by one Right

Line passing through the Centre, and that Line is bisected

by the Centre.

B 2 That
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That is, if CD = CG, or the ordinate DE = G?H ;

then shall CE = ch, and ech will be a right line.

For when cd = cg, then also is de = gh by cor. 2, th. I,

But the Z. D = ^ G, being both right angks ;

therefore the third side ce =: CH, and the /IDCE = ilGCH,

and consequently ech is a right line.

Coral. 1 . And, conversely, if ech be a right line passing

through the centre ; then sh^ll it be b'sected by the centre,

or have ce = ch ; also de will be rz gh, and cd = co.

Corol. 2. Hence also, if two tangents be drawn to the two
ends E, H of any diameter eh ; they will be parallel to each

other, and will cut the axis at equal angles, and at equal dis-

tances from the centre. For, the two cd, ca being equal to

the two CG, CB, the third proportionals CT, cs will be equal

also ; then the two sides ce, ct being equal to the two ch,

CS, and the included angle ECT equal to the included angle

ncs, all the other corresponding parts are equal : and so the

Z.T =^ As, and TE parallel to HS.

Corol. 3. And hence the four tangents, at the four ex-

tremities ofany two conjugate diameters, form a parallelogram

circumscribing the ellipse, and the pairs of opposite sides are

each equal to the corresponding parallel conjugate diameters.

For, if the diameter eh be drawn parallel to the tangent TE
or HS, it will be the conjugate to eh by the definition ; and
the tangents to e, h will be parallel to each other, and to the
diameter eh for the same reason.

theorem XV (13).

if two Ordinates ed, ed be drawn from the Extremities E, <?,

of two Conjugate Diameters, and Tangents be drawn to

the same Extremities, and meeting the Axis produced in

T and R i

Then
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Then shall cd be a mean proportional between c</, (Ik,

and cd a mean proportional between cd, dt.

For, by theor. 7,

and by the same,

theref. by equality,

But by sim tri.

theref. by equality,

In like manner,

Carol. 1. Hence cd : cd

Carol. 2. Hence also cd
And the rectangle CD . de :

Carol. 3. Also cd^ = cd
and CD^ =: cd

Or cd a mean proportional between CD, DT ^

and CD a mean proportional between cdy dm.

CD : CA : : CA : CT,
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Carol. 2. Hence also, ca- — cd' + cd",

and ca- = de'' + cle'.

Carol. 3. Further, because ca' : ca"- : : ad .

therefore ca : ca : : cd :

likewise ca :ca : : cd :

DB or cd^ : DE%
DE,

de.

THEOREM XVII (15).

If from any Point in the Curve 'here be drawn an Ordinate,

and a Perpendicidar to the Curve , or to the Tangent at

that Point : Then, the

Dist. on the Trans, between the Centre and Ordinate, cd :

Wih be to the Dist. PD : :

As ^>(]. of the Irans.Axis;

To i>q. of the Conjugate.

That is,

ca* : ca'^ : : DC : dp.

For, by theor. 2, c.\* : ca* : : ad . db : de%
But, by rt. angled Ai, the reci. td . dp — de' ;

ar.d, by cor. 1, theOr. J 6, cd . dt = ad . DB ;

therefore - - ca'' : cc/* : : td . Dc : td . dp,

or - - - - AC^ : ca* : : dc : dp. q.ed.

THEOREM XVIII (IS),

If there be Two Tangents drawn, the One to the Extremity

of the Transverse, and the other to the Extremity of any

other Diameter, each meeting the other's Diameter pro-

duced j tiie two Tangential Triangles so formed, will be

equal.

That is,

the trian»^'e cet = the

triangle can.

For, draw the ordmate DE. Then
By sim. triangles, CD : ca : : CE : cn
but, by theor. T, cd : ca :

' ca : ct :

theref. by equal, ca : ct : ; CE : cn.

The
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The two triangles get, can have then the angle C commonj
and the sides about that angle reciprocallyproportional; those

triangles are therefore equal, namely, tin: A get = A can.

Corol. 1. From each of the equal tri. CET, can,
take the common space cape,
and there remains the external A pat = A pne.

Corol. 2. Also from the equal triangles get, can,
take the common triamjle ced,

and there remains the A ted =: trapez. aned.

THEOREM XIX (19).

The same being supposed as in the last Proposition; then any
Lines Ka, qg, drawn parallel to the two Tangents, shall

also cut off equal iSJpaces. That is,

J^Xh

:ca^— CD :CA — CG
ca^ -cd":ca^ — CG"
DE^
DE-

ANHG

:Ga\
; Ga"^

;

KQG.

AKQG^trapez.ANHG,
3iXidAK(ig r:trapez. Anhg.

For, draw the ordinate de. Then
The three sim. triangles can, CDE, CGH,
are to each other as c A", CD% CG" ;

th. by div. the trap, aned : trap, anhg
But, by theor. 1, de^ : ca^
theref. byequ. trap, aned : trap, anhg
But, by sim. As, tri. ted : tri. kqg
theref. by equality, aned : ted ;

But, by cor. 2, theor. 18, the trap, aned = A ted;
and therefore the trap, anhg = A kqg.

In like manner the trap. Atihg =. A k^^-. q.e.d.

Corol. 1. The three spaces anhg^ tehg, kqg are all equaU

Corol. 2. From the equals anhg, kqg,
take the equals Anhg, Kqg,

and there remains ghnG = ggac.

CoroL 3. And from the equals ghuG^ gl'^^t
take the common space ^'^lhg,

and there remains the A lqh =: ALqk.

Corol. 4. Again from the equals kqg, tehg,
take the common space klhg,
and there remains telk = A lqh.

CoroL
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Carol. 5. And when,
by the lines kq, gh,
moving with a parallel

motion, kq comes into

the position ir, where
CR is the conjugate to

CA ; then

the triangle kqg becomes the triangle iRC,

and the >pace anhg becomes the trianj^le anc ;

and therefore the A irc = A anc = A tec.

Corol. 6. Also when the lines kg and HQ, by moving
with a parallel motion, come into the position ce?, MCy

the triangle LQ.i becomes the triangle ctfM,

and the space telk becomes the triangle tec ;

and theref. the A ct'M :=: A tec = A anc =: A irc

THEOREM XX (20).

Any Diameter bisects all its Double Ordinates, or the Lines
drawn Parallel to the Tangent at its Vertex, or to its Con-
jugate Diameter.

h

That is, if aq be parallel

to the tangent TE, or to Ctf>

then shall La = hq.

For, draw qh, gh perpendicular to the transverse.

Then by cor. 3, theor. 19, the A lqh = A Lqh ;

but these triangles are also equiangular;

consequently their like sides are equal, or lq = Lq.

Corol. Any diameter divides the ellipse into two equal
parts.

For, the ordinates on each side being equal to each other,

and equal in number ; all the ordinates, or the area, on one
side of the diameter, is equal to all the ordinates, or the area,

on the other side of it.

THEOREM
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THEOREM XXI (21).

As the Square of any Diameter

:

Is to the Square of its Conjugate :

:

So is the Rectangle of any two Abscisses:

To the Square of tneir Ordinate.

That is, ce' : ce^ : : el . lg or ce^ - CL^ : La'

For, draw the tangent

te, and produce the or-

dinate QL to the trans-

verse at K. Also draw
QH, ('M perpendicular to t k. aS^ Z^^
the transverse, and meet-

ing EG in H and M.

Then, similar triangles

being as the squares of their like sides, it is,

by sim. triangles, A cet : A clk : : ce" : z\}

or, by division, a cet : rra.). TELK : : Ctv'

Again, by sim. tri,A ceM : A lqh . : c^^ : La^.

But, by cor. 5 tneor. i'9, the A c<-M =- A CFT,

and, by cor. 4 theor. 19, the A lqh = trap, telk ;

theref. by equality, CE* : ct-^ : : CE^ — cl"^ : LaS
or - - CE* : zt^ : : EL . LG ; lq^. q e d.

Carol. 1. The squares of the ordinates to any diameter,

are to one another as the rectangles of t'leir respective

abscisses, or as the difference of the "^quares of the semi-

diameter and of the distance between the ordinate and centre.

For they are all in the same ratio of ce^ to ct^.

Carol . 2. The above being the same property as that be-

longing to the two axesj all the other properties before laid

down, for the axes, may be understood of any two conjugate

diameters whatever, using only the oblique ordinates of these

diameters, instead of the perpendicular ordinates of the axes ;

namely, all the properties in theorems 6, 7, 8, 14, 15, 16, 18

and 19.

'xSf

CE^ — CL*

theorem XXII (22).

If any Two Lines, that any where intersect each other, meet
the Curve each in Two Points ; then

The Rectangle of the Segments of the one :

Is to the Rectangle of the Segments of the other :

:

As the Square of the Diam. Parallel to the former :

To the Square of the Diam. Parallel to the latter.

That
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T K 1

and - - - - cR' ;

theref, by division, CR' ;

Again, by sim. tri. CE^:

and by division, CE^

That is, If OR and c?' be

Parallel to any tv. o Lines

PHQ, puq : then shall

CR- : c/'' : :ph .hq:/;h.h^.

For, draw the diameter che, and the tangent te/ and its

parallels pk, hi, mh, meeting the conjugate of the diameter

CR in the points t, k, i, M. Then, because similar triangles

are as the squares of their like sides, it is,

by sim. triangles, CR^ : Gp' : : A CRi : A gpk,
GH^ : : A CRI : A ghm;
GP' — GH" : : CRI : kphm.
ch'' : : A cte : A cmh ;

CE' — CH^ : : A CTE : tehm.
But, by cor. 5 theor. \9y the A cte =r A CIR,

and by cor. 1 theor. 19, tehg r: kphg, or tehm =kphm ;

theref. by equ. CE' : CE^ — CH^ : : CR^ : gp" — GH" or ph . I-IQ.

In like manner CE^ : CE^ — ch' : : cr^ : pn . Hq.

Theref. by equ. cr* : c/* : : ph . hq : j;h . Hq. q.e.d.

Carol. 1. In like manner, if any other line p'u'q'y parallel

to CJ- or to pq, meet phq ; since the rectangles ph a, pu'q'

are also in the same ratio of cr" to cr- j therefore rect.

PHQ : pnq : : PHQ : p'u'/.

Also, if another line p'/^q' be drawn parallel to pq or CR
;

because the rectangles p'/io,', p'liq' are still in the same ratio,

therefore, in general, the rect. phq : puq : : p'/tq' : p'hq'.

I'hat is, the rectangles of the parts of two parallel lines,

are to one another, as the rectangles of the parts of two other

parallel lines, any where intersecting the former.

Coral. 2. And when any of the lines only touch the curve,

instead of cutting it, the rectangles of such become squares,

and the general property still attends them.

CR''

or CR
and CR

That is,

cr- : : te
cr : : te
cr . : /e

,a Te%
Te.

te.

Corol. 3. And hence te
SECTION
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SECTION II.

OF THE HYPERBOLA.

THEOREM XIV (5).

The Sum or Difference of the Semi-transverse and a Line
drawn from the Focus to any Point in the Curve, is equal

to a Fourth Proportional to the Semi-transverse, the Dis-

tance from the Centre to the Focus, and the Distance from
the Centre to the Ordinate beloiaging to that Point of the

Curve.

That is,

FE-t-AC= ci, or FE — Ai ;

andyk— AC= ci, or /e = bi.

Where ca : cf : CD : ci the

4th propor. to CA, cf, cd.

For, draw AG parallel and equal to ca the semi-conjugate;

and join CG meeting the ordinate de produced in h.

Then, by theor. 2, CA" : AG" : : cd' — CA^ : de^ ;

and, by sim. As, CA" : AG" : : cd" — CA" : dh^ — AG^

;

consequently de'=:DH^ — ag' = DH' — ca^.

Also FD — CF ^ CD, and fd' = cf' — 2cf . CD -|- CD^;
but, by right angled triangles, fd" -f de' — fe^ ;

therefore fe' = CF" '- ca' — 2cf cd -\- cd^ -{- dh".

But by theor. 4, CF^' — cd^ = CA^,

and, by supposition, 2cF . cd = 2cA .Ci;

theref. fe^ := ca'' — 2cA . ci + cd' + dh^.

But, by supposition, cA' : cd" : : cf' or CA^ + AG* : ci*; .

and, by sim. As, CA^ : cd' : : ca' + AG' : CD* -j- dh^ ;

therefore - Ci^ = cd^ -f- dh^ = CH
'

;

consequently - fe' — CA^ — 2cA . ci -f- ci".

And the root or side of this square is fe = ci — CA r= ai.

In the same manner is foundyk = ci -|- CA — Bi. q.e.d.

Coi^ol. 1. Hence ch — ci isa 4th propor. to ca, cf, cd.

Corol.
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Corol. 2. And/E + fe = 2ch or 2ci ; or pe, ch,/e are

In continued arithmetical progression, the common difi'erence

being ca the semi-transverse.

Corol. 3. From the demonstration It appears, that DE*r^

DH^ — AG" = DH- — ca^. Consec^uently dh is every where
greater than de •, and so the asymptote CGH never meets

the curve, though they be ever so far produced : but dh and

DE approach nearer and nearer to a ratio of cquahty as they

recede farther from the vertex, till at an infinite distance they

become equ .1, and the asymptote is a tangent to the curve at

an infinite distance from the vertex.

THEOREM XV (11).

If a Line be drawn from either Focus, Perpendicular to a

Tangent to any Point ofthe Curve j the Distance of their

Intersection from the Centre will be equal to the Semi-

transverse Axis.

That is, if TVyfp be perpen-

dicular to the tangent xpp,

then shall cp and cp be each

equal to CA or cb.

For, through the point of contact e draw fe, and/E, meet-

ing FP produced in G. Then, the ^ gep=: Z. fep, being each

equal to the ^fv-p^ and the angles at P being right, and the

side PE being common, the tv/o triangles gep, fep are equal

in all respects, and so ge = fe, and gp = fp. Therefore,

since fp = t,fg, and fc = 4^/? ^^'^ the angle at f common,
the side cp will be = iJG or J^ab, that is cp = CA or cb.

And in the same manner cp = CA or cb. q e d.

Corol. I. A circle described on the transverse axis, as a

diameter, will pass through the points P,/),- because all the

lines CA, cp, c/j, cb, being equal, will be radii of the circle.

Corol. 2. CP is parallel to /e, and cp parallel to fe.

Corol. 3. If at the intersections of any tangent, with the

circumscribed circle, perpendiculars to the tangent be drawn*

they will meet the transverse axis in the two foci. That is

the perpendiculars pf, jyf give the foci f, f.

THEOREM
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THEOREM XVI (12).

The equal Ordinates, or the Ordlnates at equal Distances

from the Centre, on the opposite Sides and Ends of an

Hyperbola, have their Extremities connected by cne Right

Line passing through the Centre, and that Line is bisected

by the Centre.

That is, if CD = CG, or the

ordinate de = gh ; then shall

CE = CH, and ech will be a

right line.

For, when cd = cG, then also is de = gh by cor. 2 theor. 1.

But the Z. D = Z. G, being both right angles ;

therefore the third side CE = ch, and the Z.DCE :::z Z.GCH,
and consequently ech is a right line.

Carol. 1 . And, conversely, if ech be a right line passing

through the centre ; then shall it be bisected by the centre,

or have CE = CH, also DE will be =: gh, and CD = CO.

CoTol. 2. Hence also, if two tangents be drawn to the two
ends E, h of any diameter eh ; they will be parallel to each
other, and will cut the axis at equal angles, and at equal dis-

tances from the centre. For, the two cd, ca being equal to

the two cG, CB, the third proportionals CT, cs will be equal

also ; then the two sides ce, ct being equal to the two CH,
cs, and the included angle ect equal to the included angle

HCS, all the other corresponding parts are equal : and so the
At == As, and te parallel to hs.

CoroL 3. And hence the four tangents, at the four ex-

tremities of any two conjugate diameters, form a parallelogram

inscribed between the hyperbolas, and the pairs of opposite

sides are each equal to the corresponding parallel conjugate
diameters.—For, if the diameter eh be drawn parallel to the
tangent te or hs, it will be the conjugate to eh by the defi-

nition ; and the tangents to e,h will be parallel to each other,

and to the diameter eh for the same reason.

theorem XVII (13).

If two Ordinates ED, ed be drawn from the Extremities e, e,

of two Conjugate Diameters, and Tangents be drawn to the

same Extremities, and meeting the Axis produced in x
and R

J

Then
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Then shall cd be a mean proportional between cd, dR,
and cd a mean proportional between cd, dt.

CT,

CR;

CT,

CRJ
DT.
dR,

For, by theor. 7, cd : CA : : CA
and by the same, c^ : CA : : CA
theref. by equality, cd : erf : : cr
But by sim. tri. dt : cd : : CT
theref. by equaUty, cd : cd : : cd

In like manner, cd : CD : : cd

Coj'ol. 1. Hence cd : erf ; : cr : ct.

Corol. 2. Hence also cd : erf : : de : -de.

And the rect. cd . de = erf , de, or A cde — A crfif

.

Co)-ol. 3. Also crf^ = CD . dt, and CD^ = erf . rfR.

Or erf a mean proportional between cd, dt ;

and CD a mean proportional between erf, rfR.

Q.E.D.

THEOREM XVIII (14). f

The same Figure being constructed as in the last Proposition,

each Ordinate will divide the Axis, and the Semi-axis

added to the external Fart, in the same Ratio.

[See the last fig.]

That is, DA : DT : : DC : DB,

For,

and
and

or

Inlil

Corol. 1 . Hence, and from cor. 3 to the last prop, it is,

erf- = CD . DT — AD DB =: CD' — CA^,

and CD' = erf . avi = Arf . rfe = CA^ — crf^.

Coro[. 2. Hence also ca'-= cd'^— erf", and ca^= de^— T>-E-.

Corol. 3, Farther, because CA^ : ca* : : AD . db or crf^ : nE\
therefore CA : ca : : erf : de.

likewise ca : ca : : cd : de.

THEOREM

and rfA
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THEOREM XIX (15).

If from any Point in the Curve there be drawn an Ordinate,

and a Perpendicular to the Curve, or to the Tangent at

that Point : Then the

Dist. on the Trans. betM^een the Centre and Ordinate, cd:

Will be to the Dist. pd :

:

As Square of Trans. Axis :

To Square of the Conjugate.

CA"

That is,

ca~ : : dc DP

For, by'theor. 2, CA* : ca^ : : ad . db : de'.

But, byrt. angled As, the rect. TD . dp = de^;

and, by cor. 1 theor. 16, cd . dt = AD . db j

therefore - - ca^ : ca" : : td . dc : td . dp,

or _ - - - CA^ : ca'- : : dc : dp. q.e.d.

THEOREM XX (IS).

If there be Two Tangents drawn, the One to the Extremity
of the Transverse, and the other to the Extremity of any
other Diameter, each meeting the other's Diameter pro-

duced : the two Tangential Triangles so formed, will be

equal.

That is,

the triangle CET =
the triangle can

For, draw the ordinate de. Then
By sim. triangles, cd : CA : : CE : CN ;

but, by theor. 7, cd : ca : : CA : CT j

theref. by equal, ca : ct : : ce : cn.

The two triangles get, can have then the angle c common,
and the sides about that anglereciprocal!" proportional; thuse

triangles ai'e therefore equal, viz. the Acet= Acan. q.e.d.

Coroi.
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Carol. 1. Take each of the equal tri. cet, can,
from the common space CAPE,

and there remains the external A pat = A pne.

Corol. 2. Also take the equal triangles cet, can,
from the common triangle ced,

and there remains the A ted = trapez. aned.

THEOREM XXI (19).

The same being supposed as in the last Proposition ; theft

any Lines kq, gq, drawn parallel to the two Tangents,

shall also cut off equal Spaces.

That is,

the A KQG =: trapez. ANHG.
and A K^^ = trapez. anA^.

T KA§ D

For, draw the ordinate de. Then
The three sim. triangles can, cde, cgh,

are to each other as ca% cd", cg^ -,

th.by div. the trap, aned : trap, anhg :: cd*— ca" : co' — CA*.

But, by theor . 1 , de^ :
gq'-

: : cd^— ca^ : cg* - CA^;

theref.byequ.trap.ANED: trap, anhg: : de* : G<l^

But, by sim. As, tri. ted : tri. kqg : : de* : gq* ;

theref. by equal, aned : ted : : anhg : kqg.

But, by cor. 2 theor. 20, the trap, aned = A ted ;

and therefore the trap, anhg = A kqg.
In like manner the trap. anA^ = A K<jg. q.E.d,

Corol. 1. The three spaces anhg, tehg, kqg are all

equal.

Corol. 2. From the equals anhg, kqg,
take the equals Anhg, Viqgy

and there remains ^//hg = gq<^0.

Corol. 3. And from the equals ghuGy gqQ.G,

take the common space gqLUG,
and there remains the A lqh = A h'/h.

Corol. 4. Again, from the equals kqg., tehg,
take the common space klhg,
and there remains telk = A lqh.

CoroL
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i2orol. 5. And when, by
the lines kq, gh, moving
with a parallel motion, Ka
comes into the position ir,

where CR is the conjugate to

CA: then

the triangle kqg becomes the triangle irc,

and the space anhg become<5 the triangle ANC;
and therefore the AiRC = A^^nc = A tec.

Corol. 6. Also when the lines kq and na, by moving with
a parallel motion, come into the position ce, M<?,

the triangle lgh becomes the triangle CfM,
and the space telk becomes the triangle tec j

and tlieref. the A c^m = A tec = A anc = A irc.

THEOREM XXII (20).

Any Diameter bisects all its Double Ordinates, or the Lines

drawn Parallel to the Tangent at its Vertex, or to its Con-
jugate Diameter.

That is, if Q.q be paral-

lel to the tangent te, or

to cCy then shall lq= l^.

For, draw qh, qh perpendicular to the transverse.

Then by cor. '6 theor. 2 1, the A lqh = A -Lqh ;

but these triangles are also equiangular
;

conseq. their like sides are equal, or lq z= i.q.

Corol. 1. Any diameter divides the hyperbola into two
equal parts.

For, the ordinates on each side being equal to each other,

and equal in number ; all the ordinates, or the area, on one
side of the diameter, is equal to all the ordinates, or the area,

on the other side of It.

Carol. 2. In like manner, if the ordinate be produced to

the conjugate hyperbolas at q', q', it may be proved that

Vol. m. C La'
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LQ'= Lq'. Or if the tan-enr te e prDcluced, then ev= ew-
Also the diameter gceh bisects a 1 Hncs drawn parallel to tet
or Q«7, and Hmired either by one hyperbola, or by its two con-,
jugate hyperbolas.

THEOREM XXIII (21).

As the Square of any Diameter:
Is to the iSqnare of its Conjugate :

:

So is the Rectangle of any two Abscisses

:

To the Square of their Ordinate.

That is, CE' : ce^ : : el . lg or cl" — ce- : lq".

For, draw the tangent

TE, and produce the ordi-

nate QL to the transverse

at K, Also draw qh, cm
perpendicular to the trans-

verse, and meeting eg in

H and M. Then, similar

triangles being as the

squares of their like sides,

it is,

by sim. triangles, A get
or, by division, A get
Again, by sim. tri. A ct'Ai

A CLK : : CE^

trap. TELK : CL^ — CE'.

A LQH : : ce'^ : lq^.

But, by cor. 5 theor. 2 1 , the A ctM = A get,

and, by cor, 4 theor. 21, the A lqh = trap, telk;
theref. by equality, CE" : ce- : : cl^ — CE' : lq%
or - _ _ cE^ : ce^ : : el , lg . L€i\ q e.d.

Corol. ] . The squares of the ordinates to any diameter,

are to one another as the rectangles of their respective ab-

scisses, or as the difference of the squares of the semi-diame-

ter and of the distance between the ordinate and centre. For
they are all in the same ratio of ce' to ce^.

Corol. 2. The above being the same property as that be-

longing to the two axes, all the other properties before laid

down, for the axes, may be understood of any two conjugate

diameters whatever, using only the obHque ordinates of these

diameters instead of the perpendicular ordinates of the axes ;

namely, all the properties in theorems 6, 7, 8, 16, 17, 20, 21.

Corol. 3. Likewise, when the ordinates are continued to

the conjugate hyperbolas at «', q', the same properties still

obtain, substituting only the sum for the ditierence of the

squares of ce and cl,

That is, CE^ : ce^ : : cL* + CE" : lq'''.

And so L(i- : i.Q": : cl'' — ce* : cL* + ce^.

Corol.
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Corol. 4. When, by the motion of La' parallel to Itself,

that line coincides with v.y, the lust corollary becomes

2,

CE-

or ct'

or ze

cer

;EV-

EV

2CE-

J

V2,
or as the yide of a square to its dia<^onal.

That is, in all conjugate hyuerboi.i:>, and all their diame-

ters, any diameter '.s to its piirallel rangent, in the constant

ratio of the side of a square to its diagonal.

THEOREM XXIV (22).

If any Two Lines, that any where intersect each other, meet
the Curve each in Two Points ; then

The Rectangle of the Segments of the one :

Is to the Rectangle of the Segments of the other :

:

As the Square of the Diam. Parallel to the former :

To the Square of the Diam. Parallel to the latter.

That is, if CR and
cr be parallel to any
two lines phq, /jh^;

then shall CR^ : c/-^ : :

PH .HQ :/)H . uq.

For, draw the diameter che, and the tangent te, and its

parallels pk, ri, mh, meeting the conjugate of the diameter

CR in the points T, K, I, M. Then, because similar triangles

are as the squares of their like sides, it is,

by sim. triangles, CR^ : gp' : : A CRI : A gpk,
: GH^: : A CRI : A GHM j

: Gp' — GH" : : CRi : kphm.
: CH" : : A CTE : A cmh

;

: CH- — ce'' : : Acte : tehm.

But, by cor. 5 theor. 21, the A cte — A cir,

and by cor. 1 theor. 21, tehg = kphg, or tehm=kphm j

theref. by equ. ce^ : CH^— CE^ :: CR^ : Gp^— GH^or PH.na.
In like manner ce'^ : CH* — CE* : : cr^ : pH . h^.

Theref. by equ. cr- : c?'* : : ph . hq : />h . nq. q.e.d.

C C CoroL

and - - CR^

theref. by division, cR*

Again, by sim. tri. CE^

and by division, ce-
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Carol. I . In like manner, if any other line p'a'g', parallel

to cr or to pq, meet phq; since the rectangles ph'q, pn'q'

are also in the same ratio of CR" to W' ; therefore the rect.

PHa : pug : : ph'q : png'.
Also, if another line p'ha' be drawn parallel to PQ^or CR;

because the rectangles vho.', p'hg' are still in the same ratio,

therefore, in general, the rectangle phq : pug : :
p'^q'

: p'^g'-

That is, the rectangles of the parts of two parallel lines, are

to one another, as the rectangles of the parts of two other

parallel lines, any where intersecting the former.

Carol. 2. And when any of the lines only touch the curve,

instead of cutting it, the rectangles of such become squares^

and the general property still attends them.

That is,

CR* : cr- : : te^ : re^,

or CR : 07' : : TE : Tf",

and CR : cr : : ^£ : te,

Carol. 3. And hence te : T^ : : /e : te.

THEOREM XXV (23).
*

If a Line be drawn through any Point of the Curves, Parallel

to either of the Axes, and terminated at the Asymptotes

;

the Rectangle of its Segments, measured from that Point,

will be equal to the Square of the Semi-axis to which it is.

parallel.

That is,

the rect. hek or H6'K=:ca%

and rect. /iEA; or hek—CA*.

For, draw al parallel to ca, and cl to ca. Then
by the parallels, CA^ : ca^ or al^ : : CD" : dh^ ;

and, by theor. 2, CA^ : ca^ :: cd^ - ca^ : de^j
theref. by subtr. ca^ : Ctf^ : : ca" : dh" — de^ or hek
But the antecedents ca% ca^ are equal,

theref. the consequents ca% hek must also be equal.

la
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In like manner it is again,

by the parallels, ca^ : ca^ or al* : : CD^ : dh^ j

and, by theor. 3, CA" : ca' : : cD" + CA" : De*

;

theref by subir. CA» : ca- : : CA" : Dt^ — dh"' or H<?K.

Bur the antece lents c v", ca are the same,

thei-pf the conse(}. ca , tK must be equal.

In like manner, by changing the axes, is hEk or hek :=. CA*.

Corot. 1. Because the rect hek = the rect. He-K.

therefore eh : fH : : CK : £K.

And consequently he is alwqys greater than Hf,

Corol. 2. The rectangle ^ek = the rect. HE/t.

For, by sim. tri. eA : EH : : eX: : EK.

SCHOLIUM.

It is evident that this proposition is general for any line

obiique to the axis also, namely, that the rectangle of the

segments of any line, cut by the curve, and terminated by the

asymptotes, is equal to the square of the semi-diameter to

Tchich the line is parallel. Since the demonstration is drawn
from properties that are common to all diameters.

THEOREM XXVI (24).

All the Rectangles are equal which are made of the Seg-
ments of any Parallel Lines cut by the Curve, and limited
by the Asymptotes.

That Is,

the rect. hek = uck.

and rect. /lEk = hek.

For, each of the rectangles hek or h^k Is equal to the

square of the parallel semi-diameter cs^ and each of the rect-

angles hnk or hek is equal to the square of the parallel semi-

diameter CI. And therefore the rectangles of the segments

of all parallel lines are equal to one another. ^^'^i
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Corol. 1. The rectangle hek being constantly the same,

whether the point E is taken on the one side or the other of

the poi.it of contact i of the tangent parallel to hic, it follows

that the parts he, KE, of any line hk, are equal.

And because the rectangle HeK is constant, whether the

point e is taken in the one or the other of the opposite hy-

perbolas, it follows, that the parts Re, K.e, are also equal.

Corol. 2. And when hk comes into the position of the

tangent dil, the last corollary becomes il= id, and im= in,

and LM = DN.

Hence also the diameter ciR bisects all the parallels to dl
which are terminated by the asymptote, namely rh = rk.

Corol. 3. From the proposition, and the last corollary, it

follows that the constant rectangle hek or ehk is= iL^. And
the equal constant rect. h<'K or enc =. mln or im' — il\

Corol. 4. A id hence il = the parallel serai-diameter cs.

For, the rem ehe = il^,

and the equal rect. ene = im^ — il^,

theref. il' — im' — il% or im' = 2il' j

but, by cor. 4 theor. 23, im^ = 2cs-,

and ther;"fore - - il = cs.

And so the asymptotes pass through the opposite angles of

all the inscribed parallelograms.

theorem xxvii (25).

The Rectangle of any two Lines drawn from any Point in

the Curve, Parallel to two given Lines, and Limited by

the Asymptotes, is a Constant Quantity.

That is, if AP, EG, Di be parallels,

as also AQ EK, DM parallels,

then shall the rect. paq = rect. gek = rect. idm.

Forj
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For, produce KE, md to the other asymptote at h, l.

Then, by the parallels, he : ge : : ld : id;

but - - - EK : EK : : dm : dm ;

theref. the rectangle hek : c. i:k : : ldm : idm.
But, by the last theor. the rect. hek rz ldm j

and therefore the rect. gek = idm = paq. q.e.d.

theorem XXVIII (27).

Every Inscribed Triangle, formed by any Tangent and the

two Intercepted Parts of the Asymptotes, is equal to a

Constant Quantity; namely Double the Inscribed Paral-

lelogram,

That is, the triangle CTS ir 2 paral. GK.

For, since the tangent ts is

bisected by the point of contact

E, and EK is parallel to TC, and
GE to CK ; therefore CK, Ks, GE
are all equal, as are also cg, gt,
KE. Consequently the triangle

GTE =: the triangle KES, and
each equal to half the constant inscribed parallelogram GK.
And therefore the whole triangle cts, which is composed of
the two smaller triaiigles and the parallelogram, is equal to

double the constant inscribed parallelogram gk. q.e.d.

THEOREM XXIX (29).

If from the Point of Contact of any Tangent, and the two
Intersections of the Curve with a Line parallel to the
Tangent, three parallel Lines be drawn in any Direction,

and terminated by either Asymptote; those three Lmes
shall be in continued Proportion.

That is, if hkm and the

tangent iLbe parallel, then

are the parallels dh, ei, gk
in continued proportion.

For, by the parallels, ei : il : : dh : hm ;

and, by the same, ei : il : : gk : km ;

theref. by compos. Er : il* : : dh . gk : hmkj
but, by theor. 26, the rect. hmk =: il*5

and theref. the rect. dh . gk = ei*,

or - - - dh : ei :: EI : GK. <i.e.d,

theorem
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THEOREM XXX (30).

Draw the semi-diameters CH, CIN, CK ;

Then shall the sector chi = the sector CIK.

For, because hk and all its parallels are bisected by cin,

therefore the triangle CNH — tri. cnk,
and the sesjment inh =r seg. ink;
consequently the sector cih = sec ciK.

CoroL If the geometricals dh, fi, gk be parallel to the
other asymptote, the spaces DHIE, EIKG will be equal; for

they are equal to rhe equal sectors chi, oik.

So that by taking any geometricals CD, CE, CG, &c, and
drawing dh, ei, gk, &c, parallel to the other asymptote, as

also tlie radii ch, ci, ck ;

then the sectors chi^ cik, &c,
or the spaces dhie. eikg, 6tc,

will be all equal among themselves.

Or the sectors chi, chk, &c,
or the spaces r.Hi]:, dh kg, &c,
will be in arithmetical progression.

And therefore these sectors, or spaces, will be analogous

to the logarithms of the lines or bases CD, CE, CG, &c ; namely
CHI or DHIE the log. of the ratio of

CD to c£, or ofcE 1-0 cG, &c; or of EI toDH, orof GK toEi,&c;
and CHK or dhkg the log. of the ratio of

CD to CG, &C, or of GK to DH, &C.

SECTION III.

OF THE PARABOLA.

THEOREM XX (7).

If an Ordinate be dravm to the Point of Contact of any
Tangent, and another Ordinate produced to cut the Tan-
gent ; It will be, as the Difference of the Ordinates :

Is to die Difference added to the external Part : ;

So is Double the first Ordinate :

To the Sura of the Ordinates.

T^at
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That is, KH : ki : : kl : kg.

T

a|

25

For, by cor. 1 theor. 1 , p

and _ - _ p

But, by sim. triangles, Ki

therefore by equality, p

or, - - - p

Again, by theor. 2, p

therefore by equality, KH

Carol. I. Hence, by composition and division,

DC
2dc
KC

2iJC

KI

KH
KI

DC
DC
DC
KI

KL
KG
KL

DA,

TT or 2da.

DT;
KC,

KC.

KC j

KG. Q.E.D.

It IS, KH
and HI
also IH

KI

HK
IK

GK
HK
IK

GI,

KL,

ig;

that is, IK is a mean proportional between ig and ih.

Corol. 2. And from this last property a tangent can easily

be drawn to the curve from any given point I. Namely,
draw IHG perpendicular to the axis, and t.ike IK a mean pro-

portional between ih, ig ; then draw kc parallel to the axis,

and c will be the point of contact, through which and the

given point i the tangent ic is to be drawn.

theorem XXI {16).

If a Tangent cut any' Diameter produced, and if an Ordinate

to that Diameter be drawn from the Point of Contact

;

then the Distance in the Diameter produced, between the

Vertex and the Intersection of the Tangent, will be equal

to the Absciss of that Ordinate.

That is, IE = EK.

For, bythe last th. lE : ek : : CK :

But, by theor. 11, ck = kl,
and therefore lE rr ek.

KL.

Corol. 1. The two tangents ci, li, at the extremities of
any double ordinate CL, meet in the same point of the diame-
ter of that double ordinate produced. And the diameter
drawn through the intersection of two tangents, bisects the

line connecting the points of contact.

Corol.
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Corol. 1. Hence we have another method of drawing a

tanpeiT from any given point i without the curve. Namely,
from I draw the diameter IK, in which take EK = EI, and
throrgh K draw CL parallel to the tangent at E ; then c and L

are the points to which the tangents must be drawn from i.

THEOREM XXII (18).

If a Line be drawn from the Vertex of any Diameter, to cut

ti'.e Curve in some other Point, and an Ordinate of that

Diameter be drawn to that Point, as also another TDrdinate

any where cutnng the Line, both produced if necessary :

The Three will be continual Proportionals, namely, the

two Ordinates and the Part of the Latter limited by the

said Line drawn from the Vertex.

That is, DE, GH, Gi are

continual proportionals, or

DE : GH : : gh : gi.

For, by theor, 9, - - - de- : gh'

and, by sim. tri. - - - de : Gi

thei-ef. by equality, - - DE : Gi

thatis, ofthethreeDE,GH,Gi,lst : 3d
therefore - - - - - 1st : 2d

tiiat is, - - - - - - DE : GH : : GH : ci. q.e.d.

Carol. 1 . Or their equals, GK, GH, Gi, are proportionals

;

where ek is parallel to the diameter ad.

Corol. 2. Hence it is de : AG : : p : Gi, where p is

the parameter, or AG : Gi : : de ; p.

For, by the defin. ag : gh : : GH : p.

Corol. 3. Hence also the three mn, mi, mo, are propor-

tionals, where mo is parallel to the diameter, and am parallel

to the ordinates.

For, by theor. 9, - mn, mi, wo,
or their equals - AP, AG, ad,

are as the squares of pn, gh, de,

or of their equals gi, gh, gk, .

which are proportionals by cor. 1

.

ad
AD
de"

Ist^

2d
GH

AG;
AG;
GH-,

2d^;

3d,

Gl.

THEOREM XXIII (19).

If a Diameter cut any Parallel Lines terminated by the Curve;

the Segments of the Diameter will be as the Rectangle of

the .Segments of those Lines.^
That
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That is, EK : em : : ck . kl : nm . MO.

Or, EK is as the rectangle CK . KL.

For, draw the diameter

PS to which the parallels

CL, NO are ordinates, and

the ordinate EQ parallel to

them.
Then ck is the differ-

ence, and KL the sum of

the ordinates EQ, CR ; also

NM the difference, and mo the sum of the ordinates eq, ns.

And the differences of the abscisses, are UR, QS, or EK, em.

Then by cor. theor. 9, qr : qs ; : ck . kl : nm . mo,

that is - - ek : em : : ck . kl : nm . MO.

CoroL 1 . The rect. ck.kl =rect. ek and the param. of PS.

For the rect. ck.kl rrrect. g R and the param. ot ps.

CoroL 2. If any line CL be cut by two diameters, Er:, gh ;

the rectangles of the parts of the line, are as the segments of

the diameters.

For EK is as the rectangle ck . kl,

and GH is as the rectangle CH . hl ;

therefore ek : gh : : ck . kl : ch . hl.

Coral. 3. If two parallels, cl, no, be cut by tw"> diame-

ters, EM, Gi ; the rectangles of the parts of the parallels, will

be as the segments of the respective diameters.

For - - - EK : em : : ck . kl : nm . mo,
and - - - EK : GH : : CK . KL : CH . hl,

theref. by equal, em : gh : : nm . mo : ch . hl.

Carol. 4. When the parallels come into the position of

the tangent at p, their two extremities, or points in the curve,

unite in the point of contact P ; and the rectangle of the parts

becomes the square of the tangent, and the same properties

still follow them.

So that, Ev : pv : : pv '. p the param.

gw : pw : : pw : /?,

ev : GW : : pv^: pw*,

EV ; GH : : PV* : CH . HL.

THEOREM
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t THEOREM XXIV (20).

If two Parallels intersect any other two Parallels ; the Rect-
angles of the Segments will be respectively Proportional.

That is, CK . KL : DK . KE : : GI . IH : M . lo.

cii :



2:> )

SECTION IV.

ON THE CONIC SECTIONS AS EXPRESSED BY ALGEBRAIC
EQUATIONS, CALLED THE EQUATIONS OF THE CURVE.

1. For the Ellipse.

Let d denote ab, the transverse, or any diameter ;

f = IH its conjugate;

;r = ak, any absciss, from the extremity of the diam.

y = DK the correspondent ordinate.

Then, theor. 2, ab- : hi^ : : ak . kb : dk^,

that is, d"- : c^ :: x{d - x) : j/% hence dh/= (f-{dx-x^)y

or dj/ zz C'/idx— Jv^)y the equation of the curve.

And from these equations, any one of the four letters or

quantities, d, c, :r. i/, may easily be found, by the reduction

of equations, when the other three are given.

Or, ifp denote the parameter, = c^"-^dhy its definition

;

then, by cor.th. 2, d : p :: x[d—x) : j/% or dtj'^=p{dx— x^),

which is another form of the equation of the curve.

Otherwise.

Or, \£ d =. AC the semiaxis; c = CH the semiconjugate

;

p zzc^-r-d the semiparameterj a:* = CK the absciss counted

from the centre; and^= DK the ordinate as before.

Then is ak=^/— -r, and KB zszd-^-Xy and AK.KB=(rf— ^)X
{d + x) - d"- - x\

1 hen, by th. 2, d^ : c"- : : d^-x" : j/% and dy= c\d^ -x%
or dj/ — C'>/{d'^ — x-)y the equation of the curve.

Or, d : p :: d^— x^ : j/% and di/''z=:p{d^—x*)y another form

of the equation to the curve; from which any one of the

quantities may be found, v/hen the rest are given.

2. For the Hyperbola.

Because the general property of the opposite hyperbolas,

with respect to their abscisses and ordinates, is the same as

that
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tliPt of the ellipse, therefore the process here is the very same

as in the former case for the ellipse ; and the equation to the

curve must come out the same also, with sometimes only the

change of the sign of a letter or term, from + to —, or from
— to +, because here the abscisses lie beyond or without

the transverse diameter, whereas they lie between or upon

them in the ellipse. Thus, making the same notation for the

whole diameter, conjugate, absciss, and ordinate, as at first in

the ellipse ; then, the one absciss AK being .r, the other BK
will be d -\- X, which in the ellipse was d — x\ fo the sign

of X must be changed in the general property and equation,

by which it becomes d'^ : c^ ::•. x{d -\- x) :y i
hence d'i/=

c'{dx -\- X-) and d\j — c >^ {dx + .r^), the equation of the

curve.

Or using/)the parameter, as before, it \s,d'.p .:x(d-{'X):i/,

or dif- = p{dx -\- x^)j another form of the equation to the

curve.

Otherrvise, by using the same letters d, c, p, for the halves

of the diameters and parameter, and x for the absciss CK
counted from the centre ; then is AKrz.i-— </, and BK^.r+ c/,

and the property d' : c^ : : {x - d) x (x + d) : j/S gives

d'lj- zz c~{x^ — d~), or dy = C\/{x^ — J"), where the signs of

d^ and x'' are changed from what they were in the ellipse.

Or again, using the semiparameter, d : p : : x^ — d^ : j/%

and dy"^ z=:p{x^ — d^) the equation of the curve.

But for the conjugate hyperbola, as in the figure to theo-

rem 3, the signs of both x^ and d' will be positive ; for the

property in that theorem being CA" : ca^ : : CD" + CA^ : Dc%

it is ^' :
6-^

: : x' + d^ :

y' = Dt'% or dy^ = c-(.i'^ + d% and

ily = cv/(a* + d~), the equation to the conjugate hyperbola.

Or, 2iS d : p : : x"" + d"- : j/% and dy"- = /;(.r' + d') also the

equation to the same curve.

On the Equation to the Hyperbola between the Asymptotes.

Let CE and cb be the two asymptotes to r i

the hyperbola dFD, its vertex being f, and
\^

EF, bd, AF, BD ordinates parallel to the

asymptotes. Put af or ef = a, cb = a:*,

and BD = y. Then, by theor. 28, af.ef
= CB . BD, or cr = xy, the equation to the LJ—L_L
hyperbola, when the abscisses and ordinates ^ b A ii

are taken parallel to the asymptotes.

3. For the Parabola.

If .r denote any absciss beginning at the vertex, and ?/ its

ordinate, also p the parameter. Then, by cor. theorem 1,

AK
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AK : KD : : KD : />, or .v '.y.'.y '• f \ hence px = j/* is the

equation to the parabola,

4. For the Circle.

Because the circle is only a species of the ellipse, in which
the two axes are equal to each other j therefore, making the

two diameters r/and c equal, in the foregoing equations to the

ellipse, they become if = dx — x^y when the absciss x begins

at the vertex of the diameter : and 3/' = d^ — .r% when the

absciss begins at the centre.

Scholium.

In every one of these equations, we perceive that they rise

to the 2d or quadratic degree, or to two dimensions ; which
is also the number of points in which every one of these

curves may be cut by a right line. Hence it is also that these

four curves are said to be' lines of the 2d order. And these

four are all the lines that are of that order, every other curve

being of some higher, or having some higher equation, or

may be cut in more points by a right line.

CHAPTER II.

ELEMENTS OF ISOPERIMETRY.

Def. 1. When a variable quantity has Its mutations regu-

lated by a certain law, or confined within certain limits, it is

called a viaximiim when it has reached the greatest magni-
tude it can possibly attain j and, on the contrary, when it

has arrived at the least possible magnitude, it is called a

minimum.

Def. 2. IsoperimeterSy or Isoperimetrical Figures, are

those which have equal perimeters.

Def. 3. The Locus of any point, or intersection, &c, is

the right line or curve in which these are always situated.

The problem in which it is required to find, among figures

of the same or of dItFerent kinds, those which, within equal

perimeters, shall comprehend the greatest surfaces, has long

engaged the attention of mathematicians. Since the admir-

able Invention of the method of Fluxions, this problem has

been elegantly treated by some of the writers on that branch
of
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of analysis; especially by Maclaurin and Simpson. A much
more extensive problem was investigated at the time of
** the war of problems," between the two brothers John and
James Bernoulli : namely, *' To find, among all the isoperi-

metrical curves between given limits, such a curve, that, con-

structing a second curve, the ordinates of which shall be

functions of the ordinates or arcs of the former, the area of

the second curve shall be a maximum or a minimum." While,
however, the attention of mathematicians was drawn to the

most abstruse inquiries connected with isoperimetry, the ele-

ments of the subject were lost sight of. Simpson was the first

who called them back to this interesting branch of research,

by giving in his neat little book ofGeometry a chapter on the

maxima and minima of geometrical q-aaniities, and some of

the simplest problems concerning isoperimeters. The next

who treated this subject in an.elementary manner was Simon
Lhuillier, of Geneva, who, in 1782, published his treatise

De Relatione imttua Capucitatis et Tenninorum Figurarumf
&c. His principal object in the composition of that work
was to supply the deficiency in this respect which he found in

most of the Elementary Courses ; and to determine, with re-

gard to both the most usual surfaces and solids, those which

possessed the minimum of contour with the same capacity

;

and, reciprocally, the maximum of capacity with the same

boundary. M. Legendre has also considered the same sub-

ject, in a manner somewhat different from either Simpson or

Lhuillier, inhis Elementsde Geometrie. An elegant geometri-

cal tract, on the same subject, was also given, by Dr. Horsley,

in the Philos. Trans, vol. 75, for 1775; contained also in the

New Abridgment, vol. 13, page 653. The chief propositions

deduced by these four geometers, together with a few addi-

tional prop(;sitions, arc reduced into one system in the follow-

ing theorems.

SECTION I. SURFACES.

THEOREM I.

Of all Triangles of the same Base, and whose Vertices fall

in a ri;iht Line given in Position, the one whose Perimeter

is a Minimum is that whose sides are equally mchned to

that Line.

Let AB be tlie comn-.on base of a series of triangles ABc',

ABC, &c, whose vertices c', c, fall in the right fine lm, given

in
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in position, then is the triangle of least

perimeter that whose sides AC, bc, are

inclined to the hne lm in equal angles.

For, let BM be drawn from B, per-

pendicularly to LM, and produced till

DM = BM : join AD, and from the point

C where ad cuts lm draw ec : also, from any other point c',

assumed in lm, draw CA, c'b, c'd. Then the triangles dmc,
EMC, having the angle dcm = angle ACL (th. 1 Geom.) su

MCB (by hyp.), dmc = bmc, and dm = bm, and Mc common
to both, have also DC = bc (th. 1 Geom.).

So also, we have CD = c'b. Hence ac + cb = ac + CD
=: AD, is less than Ac' + c'd (theor. 10 Geom.), or than its

equal Ac' + c'b. And consequently, ab + bc -j- ac is less

than ab + bc' + ac'. q. e. d.

Cor. 1 . Of all triangles of the same base and the same al-

titude, or of all equal triangles of the same base, the isosceles

triangle has the smallest perimeter.

For, the locus of the vertices of all triangles of the same
altitude will be a right line lm parallel to the base; and
when LM in the above figure becomes parallel to ab, since

MCB = ACL, MCB = CBA (th. 12 Geoni.), ACL = cab ; it

follows that CAB = CBA, and consequently ac =: cb (th. 4'

Geom.).
Cor. 2. Of all triangles of the same surface, that which

has the minimum perimeter is equilateral.

For the triangle of the smallest perimeter, with the same
surface, must be isosceles, whichever of the sides be consi-

dered as base : therefore, the triangle of smallest perimeter

has each two or each pair of its sides equal, and consequently

it is equilateral.

Cor. 3. Of all rectilinear figures, with a given magnitude
and a given number of sides, that which has the smallest pe-
rimeter is equilateral.

For so long as any two adjacent sides are not equal, we
may draw a diagonal to become a base to those two sides, and
then draw an isosceles triangle equal to the triangle so cut

off, but of less perimeter : whence the corollary is manifest.

Sc/ifllium.

To illustrate the second corollary above, the student may
proceed thus : assuming an isosceles triangle whose base is

?wt equal to either of the two sides, and then, taking for a new
base one of those sides of that triangle, he may construct an-

other isosceles triangle equal to it, but of a smaller perimeter.

Afterwards, if the base and sides of this second isosceles tri-

V<iL. III. D angig
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angle are not respectively equal, he may construct a third

isosceles triangle equal to it, but of a still smaller perimeter:

and so on. In performing these successive operations, he will

find that the new triangles will approach nearer and nearer

to an equilateral triangle.

THEOREM II.

Of all Triangles of the Same Base, and of Equal Perimeters;

the Isosceles Triangle has the Greatest Surface.

Let ABC, ABD, be two triangles of the same C

base AB and with equal perimeters, of which ^/aK""^
the one abc is isosceles, the other is not

:

l/^y^ \

then the triangle abc has a surface (or an fJ[\ \

altitude) greater than the surface (or than /X ' \/
the altitude) of the triangle abd. A E 15

Draw c'd through D, parallel to AB, to

cut CK (drawn perpendicular to Ab) in c': then it is to be

demonstrated that ce is greater than c'e.

The triangles ac'b, adb, are equal both In base and alti-

tude-, but the triangle AC b is isosceles, while adb is scalene:

therefore the triangle ac'b has a smaller perimeter than the

triangle adb (th. 1 cor. i), or than acb (by hyp.). Conse-

•quently Ac' < AC ; and in the right-angled triangles aec', aec,

having ae common, we have c'e < ce*. q. e. d.

Cor. Of all isoperimetrical figures, of which the number
of sides is given, that which is the greatest has all its sides

equal. And in particular, of all isoperimetrical triangles, that

whose surface is a maximum, is equilateral.

For, so long as any two adjacent sides are not equal, the

surface may be augmented without increasing the perimeter.

Hemark. Nearly as in this theorem may it be proved

that, of all triangles of equal heights, and of which the sum
of the two sides is equal, that which is isosceles has the great-

est base. And, of all triangles standing on the same base

and having equal vertical angles, the isosceles one is the

greatest.

• When two matliematical (luantities are separated by the character <,
it denotos tiiat the preceding quantity is less than th'; succeeding one: when,

on the contrary, the separating character is >, it denotes that the preceding

e[uanlity is greater than the succeeding one.

THEOREM
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THEOREM III.

Of all Right Lines that can be drawn through a Given Point,

between Two Right Lines Given in Position^ that which is

Bisected by the Given Point forms with the other two Lines

the Least Triangle.

Of all right lines GD, AB, GD, that

tfan be drawn through a given point

p to cut the right lines CA, CD, given

in position, that, AB, which is bisect-

ed by the given point p, forms with
CA, CD, the least triangle, ABC.

For, let EE be drawn through A
parallel to CD, meeting dG (produced if necessary) in e;
then the triangles pbd, pae, are manifestly equiangular ; and,

since the corresponding sides pb, pa are equal, the triangles

are equal also. Hence PBD will be less or greater than pag,
according as co is greater or less than ca. In the former
case, let pacd, which is common, be added to both; then will

BAC be less than dgc (ax. 4 Geom.). In the latter case, if

pgcb be added, dcg will be greater than bac ; and conse-

<juently in this case also bac is less than dcg. Q^e. d.

Cor. If PM and pn be drawn parallel to cb and CA re-

spectively, the two triangles pam, pbn, will be equal, and
these two taken together (since am = PNrr Mc) will be equal

to the parallelogram pmcn : and consequently the parallelo-

gram PMCN is equal to half abc, but less than half dgc.
From which it follows (consistently with both the algebraical

and geometrical solution of prob. 8, Application of Algebra

to Geometry), that a parallelogram is always less than half a

triangle in which it is inscribed, except when the base of the

one is half the base of the other, or the height of the former

half the height of the latter; in which case the parallelogram

is just half the triangle : this being the maximum parallelo-

gram inscribed in the triangle.

Scholium.

From the preceding corollary it might easily be shown,

that the least triangle which can possibly be described about,

and the greatest parallelogram which can be inscribed in, any

curve concave to its axis, will be when the subtangent is equal

to half the base of the triangle, or to the whole base of the

parallelogram : and that the two figures will be in the ratio of

2 to I. But this is foreign to the present enquiry.

D 2 THEOREM
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THEOREM IV.

Of all Triangles in which two Sides are Given in Magnitude,
the Greatest is that in which the two Given Sides are Per-
pendicular to each other.

For, assuming for base one of the given sides, the surface

is proportional to the perpendicular let fall upon that side

from the opposite extremity of the other given side : there-

fore, the surface is the greatest when that perpendicular is

the greatest ; that is to say, when the other side is not in-

clined to that perpendicular, but coincides with it : hence the

surface is a maximum when the two given sides are perpendi-

cular to each other.

Otherwise. Since the surface of a triangle, in which two
sides are given, is proportional to the sine of the angle in-

cluded between those two sides; it follows, that the triangle

is the greatest when that sine is the greatest : but the greatest

sine is the sine total, or the sine of a quadrant ; therefore the

two sides given make a quadrantal angle, or are perpendicular

to each other, q^ e. d.

THEOREM V.

Of all Rectilinear Figures in which all the Sides except one
are known, the Greatest is that which may be Inscribed in

a Semicircle whose Diameter is that Unknown Side.

For, if you suppose the contrary to be the case, then when-
ever the figure made with the sides given, and the side un-

known, is not inscribable in a semicircle of which this latter

is the diameter, viz. whenever any one of the angles, formed

by lines drawn from the extremities of the unknown side to

one of the summits of the figure, is not a rigiit angle ; we
may make a figure greater than it, in which that angle shall

be right, and v/hich shall only differ from it in that respect

:

therefore, whenever all the angles, formed by right lines

drawn from the several vertices of the figure to the extremi-

ties of the unknown line, are not right angles, or do not fall

in the circumference of a semicircle, tlie figure is not in its

maximum state. Q^ E. D.

THEOREM VI.

Of all Figures made with Sides Given in Number and Mag-
nitude, that which may be Inscribed in a Circle is the

Greatest.

Let
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Let ABCDEFGbethe
polygon inscribed, and

abcdt'fg a polygon with

equal sides, but not in-

scribable in a circle; so

that AB = ab^ bc = be,

Sec ; it is affirmed that

the polygon abcoefg
is greater than the polygon abcdefg.

Draw the diameter ep; join ap, pb ; upon ab = ab make
the triangle abp, equal in ail respects to abp ; and join ep.

Then, of the two figures edebp, pagfe, one at least is not (by

hyp.) inscribable in the semicircle of which ep is the diame-
ter. Consequently, one at least of these two figures is smaller

than the corresponding part of the figure apecdefg (th. 5).

Therefore the figure apecdefg is greater than the figure

apbcdejg : and if from these there be taken away the respect-

ive triangles apb, apb, which are equal by construction, there

will remain (ax. 5 Geom.) the polygon abcdefg greater than
the polygon abedefg. q. e. d.

THEOREM VII.

The Magnitude of the Greatest Polygon which can be con-

tained under any Number of Unequal Sides, does not at all

depend on the Order in which those Lines are connected
with each other.

For, since the polygon is a maximum under given sides, it

is inscribable in a circle (th. 6). And this inscribed polygon
is constituted of as many isosceles triangles as it has sides,

those sides forming the bases of the respective triangles, the

other sides of all the triangles being radii of the circle, and
their common summit the centre of the circle. Consequently,

the magnitude of the polygon, that is, of the assemblage of
these triangles, does not at all depend on their disposition,

or arrangement around the common centre, q. e. d.

THEOREM VIII.

If a Polygon Inscribed in a Circle have all its Sides Equal, all

its Angles are likewise Equal, or it is a Regular Polygon.

For, if lines be drawn from the several angles of the poly-

gon, to the centre of the circumscribing circle, they will

divide the polygon into as many isosceles triangles as it has

sid-s; and each of these isosceles triangles will be equal to

either of the others in all respects, and of course they will

liuve
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have the angles at their bases all equal : consequently, the

angles of the polygon, r/hich are each made up of two angles

at the bases of two contiguous isosceles triangles, will be equal

to one another, q. e. d.

THEOREM IX.

Of all Figures having the Same Number of Sides and Equal
Perimeters, the Greatest is Regular.

For, the greatest figure under the given conditions has

all its sides equal (th. 2 cor,). But since the sum of the

sides and the number of them are given, each of them is

given : therefore (th. 6), the figure is inscribable in a circle:

and consequently (th. 8) all its angles are equal ; that is, it is

regular, q. e. d.

Cor. Hence we see that regular polygons possess the pro-

perty of a maximum of surface, when compared with any

other figures of the same name and with equal perimeters.

THEOREM X.

A Regular Polygon has a Smaller Perimeter than an Irregu-

lar one Equal to it in Surface, and having the Same
Number of Sides.

This is the converse of the preceding theorem, and may
be demonstrated thus : Let r and i be two figures equal in

surface and having the same number of sides, of which R is

regular, i irregular : let also r' be a regular figure similar to

K, and having a perimeter equal to that of i. Then (th. 9)

b' > I; but I = R ; therefore r' > R. But r' and r are si-

milar ; consequently, perimeter of r' > perimeter of r ; while

per. r' = per. i (by hyp.). Hence, per. i > per ii. q. e. d.

THEOREM XI.

The Surfaces of Polygons, Circumscribed about the Same or

Equal Circles, are respectively as their Perimeters *.

Let the polygon abcd be circumscribed 1) fi

nbout the circle etgh ; and let this polygon

be divided into triangles, by lines drawn
from its several angles to the centre o of

the circle. Then, since each of the tan-

gents AB, BC, &c, is perpendicular to its

• This throreiTi, together with the analajousones respecting bodies circum-
scribing cylinders ami s;)l)r!rcs, were given by Emerson in his Geometry, and
their use in the theory of Isoperimeters was just suggested : but thci full

application of them to that theory is' due to Simon Lhuiilicr.

corre°
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corresponding radius OE, of, &c, drawn to the point ofcon-

tact (th. 46 Geom.); and since the area of a triangle is equal

to the rectangle of the perpendicular and half the base (Mens,

of Surfaces, pr. 2); it follows, that the area of each of the

triangles abo, bco, &c, is equal to the rectangle of the radius

of the circle and half the corresponding side An, EC, &c : and
consequently, the area of the polygon abcd, circumscribing

the circle, will be equal to the rectangle of the radius of the

circle and half the perimeter of the polygon. But, the sur-

face of the circle is equal to the rectangle of the radius and
half the circumference (th. 94 Geom.). Therefore, the sur-

face of the circle, is to that of the polygon, as half the cir-

cumference of the former, to half the perimeter of the latter;

or, as the circumference of the former, to the perimeter of

the latter. Now, let P and p' be any two polygons circum-
scribing a circle c : then, by the foregoing, we have

surf, c : surf, p : : circuni. c : perim. p.

surf, c : surf, p'
: : circxim, C : perim. p'.

But, since the antecedents of the ratios in both these propor-

tions, are equal, the consequents are proportional: that is,

surf, p : surf, p'
: : perim. p : perim. p'. Q. E. D.

Co}\ 1. Any one of the triangular portions AEO, of a po-

lygon circumscribing a circle, is to the corresponding circular

sector, as the side ab of the polygon, to the arc of the circle

included between ao and bo.

Coi\ 2. Every circular arc Is greater than its chord, and
less than the sum of the two tangents drawn from its ex-
tremities arid produced till they meet.

The first part of this corollary is evident, because a right

line is the shortest distance between two given points. The
second part follows at once from this proposition : for ea -{-

AH being to the arch eih, as the quadrangle aeoh to the
circular sector hieo ; and the quadrangle being greater than
the sector, because it contains it ; it follows that ea + ah is

greater than the arch eih *.

Co7\ 3. Hence also, any single tangent EA, Is greater than

its corresponding arc ei.

• This second corollary is introduced, not because of its immediate con-
nection with the subject under discussion, but because, notwithstanding its

simplicity, some autiiors have employed whole pages in attempting its de-
aiODStration, and failed at last.

THEOREM
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THEOREM XII.

If a Circle and a Polygon, Circumscribable about another

Circle, are Isoperimeters, the Surface of the Circle is a

Geometrical Mean Proportional between that Polygon and

a Similar Polygon (regular or irregular) Circumscribed

about that Circle.

Let c be a circle, p a polygon isoperimetrical to that circle,

and circumscribable about some other circle, and p' a polygon

similar to P and circumscribable about the circle c : it is af-

firmed that p : c : : c :
p'.

For, p :
p'

: ; perim*. p : : perim*. p'
: : cIrcum^ c : perim*. p'

by th. 89, Geom. and the hypothesis.

But (th. 11 ) p'
: c : : per. p'

: cir. c : : per. p'
: per. p' x cir. c.

Therefore p : c : : - - - - cir*. c : per. p' x cir. c

; : cir. c : per. p' : : c : p'. o.- e. d.

THEOREM XIII.

If a Circle and a Polygon, Circumscribable about anothef

Circle, are Equal in Surface, the Perimeter of that figure

is a Geometrical Mean Proportional between the Circum-

ference of the first Circle and the Perimeter of a Similar

Polygon Circumscribed about it.

Let c = p, and let p' be circumscribed about c and similar

to C : then it is afiirmed that cir. c : per. p : per p : per p'.

For, cir. c : per. p'
: : c : p'

: : p :
p'

: : per^. p : per*, p'.

Also, per. p'
: per. p - - - : : per\ p'

: per. p X per. p'.

Therefore, cir. c : per. p - - : : per*. P : per. p X per. P*

; : per. p ; per. p'. q. E. d.

THEOREM XIV.

The Circle is Greater than any Rectilinear Figure of the Same
Perimeter j and it has a Perimeter Smaller than any Recti-

linear Figure of the same Surface.

For, in the proportion, p : c : : c : p', (th. 12), since c < p',

therefore p < c.

And, in the propor. cir. c : per. p : : per. p : per. ?' (th. 13),

or, cir. c : per. p'
: : cir'. c*: per", p,

and cir. c < per. p';

therefore, cir^. c < per*. P, or cir. c < per. P. q. e. d.

Cor. 1. It follows at once, from this and the two preced-

ing theorems, that rectihnear figures which are isoperimeters,

and
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and each clrcumscribable about a circle, are respectively in

the inverse ratio of the perimeters, or of the surfaces, of

figures similar to them, and both circumscribed about one

and the same circle. And that the perimeters of equal rec-

tilineal figures, each circumscribable about a circle, are re-

spectively in the subduplicatc ratio of the perimeters, or of

the surfaces, offigures similar to them, and both circumscribed

abour one and the same circle.

Cor. 2. Therefore, the comparison of the perimeters of

equal regular figures, having different numbers of sides, and

that of the surfaces of regular isoperimetrical figures, is re-

duced to the comparison uf the perimeters, or of the surfaces

of regular figures respectively similar to them, and circum-

scribable about one and the same circle.

Lemma 1.

If an acute angle of a right-angled triangle be divided into

any number of equal parts, the side of the triangle opposite

to that acute angle is divided into unequal parts, which are

greater as they are more remote from the right angle.

Let the acute angle c, of the right- Cs

ang'ed triangle acf, be divided into equal

parts, by the lines CB, CD, ce, drawn from
that angle to the opposite side ; then shall

the parts ab, bd, &c, intercepted by the AB J)

lines drawn from c, be successively longer as they are more
remote from the right angle A.

For, the angles acd, bce, &c, being bisected by cb, cd,
&c, therefore by theor. 83 Geom. AC : cd : : ab : bd, and
EC : CE : : BD : DE, and DC : CF : : de : ef. And by th. 21
Geom. CD > ca, ce > cb. cf > cd, and so on : whence it

follows, that DB > ab, de > db, and so on. q. e. d.

Cor. Hence it is obvious that, if the part the most remote
from the right angle A, be repeated a number of times equal

to that into which the acute angle is divided, there will re-

sult a quantity greater than the side opposite to the divided

angle.

THEOREM XV.

Iftwo Regular Figures, Circumscribed about the Same Circle,

differ in their Number of Sides by Unity, that which has
the Greatest Number of Sides shall have the Smallest Pe-
rimeter.

Let CA be the radius of a circle, and A b, ad, the half sides

of two regular polygons circumscribed about that circle, of

which
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which the number of sides differ by unity, being
respectively n+ 1 and n. The angles acb, acd,

therefore are respectively the—; and the —th

part of two right angles: consequently these A bD
angles are as n and n -\- I : and hence, the angle may be
conceived divided into ?j"i- 1 equal parts, of which bcd is one.
Consequently, (cor. to the lemma) {n + Dbd > ad. Taking,
then, unequal quantities from equal quantities, Ave shall have

(n + J; AD - (« + 1) BD < {n + l) ad - ad,
or, (n + 1) AB<7? . ad.

That is, the semiperimeter of the polygon whose half side is

AB, is smaller than the semiperimeter of the polygon whose
half side is ad : whence the proposition Is manifest.

Cor. Hence, augmenting successively by utiity the num-
ber of sides, it follows generally, that the perimeters of
polygons circumscribed about any proposed circle, become
smaller as the number of their sides become greater.

THEOREM XVI.

The Surfaces of Regular Isoperimetrical Figures arc Greater
as the Number of their Sides is Greater: and the Perimeters

of Equal Regular Figures are Smaller as the Number of

their Sides is Greater.

For, 1st. Regular isoperimetrical figures are (cor. 1 th. 14)

in the inverse ratio of figures similar to them circumscribed

about the same circle. And (th. 15) these latter are smaller

when their number of sides is greater: therefore, on the

contrary, the former become greater as they have more sides.

2dly. The perimeters of equal regular figures are (cor. 1

th. 14) in the subdupllcate ratio of the perimeters of similar

figures circumscribed about the same circle: and (th. 15)

these latter are smaller as they liave more sides : therefore

the perimeters of the former also are smaller when the num-
ber of their sides is greater, q. e. d.

SECTION II. SOLIDS.

THEOREM XVII.

Of all Prisms of the Same Altitude, whose Base is Given in

Magnitude and Species, or Figure, or Shape, the Right

Prism has the Smallest Surface.

For,
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For, the area of each face of the prism is proportional to its

height ; therefore the area of each face is the smallest when
its height is the smallest, that is to say, when it is equal to

the altitude of the prism itself: and in that case the prism is

evidently a right prism. (^ E. d.

THEOREM XVIII.

Of all Prisms whose Base is Given in Magnitude and Species,

and whose Lateral Surface is the Same, the Right Prism
has the Gi-eatest Altitude, or the Greatest Capacity.

This is the converse of the preceding theorem, and may
readily be proved after the manner of theorem 2.

THEOREM XIX.

Of all Right Prisms of the Same Altitude, whose Bases are

Given in Magnitude and of a Given Number of Sides, that

whose Base is a Regular Figure has the Smallest Surface.

For, the surface of a right prisin of given altitude, and base

given in magnitude, is evidently proportional to the perime-

ter of its base. But (th. 10) the base being given in magni-
tude, and having a given number of sides, its perimeter is

smallest when it is regular : whence, the truth of the propo-

sition is manifest.

THEOREM XX.

Of Two Right Prisms of the Same Altitude, and with Irre-

gular Bases Equal in Surface, that whose Base has the
Greatest Number of Sides has the Smallest Surface : and, in

particular, the Right Cylinder has a Smaller Surface than
any Prism of the Same Altitude and the Same Capacity.

The demonstration is analogous to that of the preceding

theorem, being at once deducible from theorems 16 and 14.

THEOREM XXI.

Of all Right Prisms whose Altitudes and whose "Whole Sur-
faces are Equal, and whose Bases have a Given Number of
Sides; that whose Base is a Regular Figure is the Greatest.

Let p, p', be two right prisms of the same name, equal in

altitude, and equal whole surface, the first of these having a

regular, the second an irregular base ; then is the base of the

prism p', less than the base of the prism p.

For, let p" be a prism of equal altitude, and whose base is

equal to that of the prism p' and similar to that of the prism p.

Then,
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Then, the lateral surface of the prism p" is smaller than the

lateral surface of the prism p' (th. 19) : hence, the total sur-

face of p
' is smaller than the total surface of p', and therefore

(bv hyp.) smaller than the whole surface of p. But the prisms
p' and V have equal altitudes and similar bases ; therefore the

dimensions of the base of p" are smaller than the dimensions
of the base of p. Consequently the base of p", or that of p',

is less than the base of ? j or the base of p greater than that

of p'. q. E. D.

THEOREM XXII.

Of Two Right Prisms, having Equal Altitudes, Equal Total

Surfaces, and Regular Bases, that whose Base has the

Greatest Number of Sides, has the Greatest Capacity.

And, in particular, a Right Cylinder is Greater than any
Right Prism of Equal Altitude and Equal Total Surface.

The demonstration of this is similar to that of the preced-

ing theorem, and flows from th. 20.

THEOREM XXIir.

The Greatest Parallelopiped which can be contained under
the Three Parts of a Given Line, any way taken, will be

that constituted of Equal length, breadth, and depth.

For, let AB be the given line, and,

if possible, let two parts ae, ed, be ]—

[

[

unequal. Bisect ad in c, then will A C E D B

the rectangle under ae (
— AC -}- ce)

and ED ( = AC — ce), be less than ac% or than ac . cd, by the

square of ce (th. 3^^ Geom.). Consequently, the solid ae .

ED . DB, will be less than the solid AC . CD . DB j which is

repugnant to the hypothesis.

Cor. Hence, of all the rectangular parallelepipeds, hav-

ing the sui.i of their three dimensions the same, the cube is

the greatest.

THEOREM XXIV.

The Greatest Parallelopiped that can possibly be contained

under the Square of one Part of a Given Line, and the

other Part, any way taken, will be when the former Part

is the Double of the latter.

Let AD be a given line, and
AC = 2cB, then is ac" . CB the A D' i) C C

greatest possible.

For,
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For, let Ac' and c'b be any other parts Into which the given

Hue AB may be divided; and let ac, ac', be bisected in D,

r>', respectively. Then shall ac' . cb = 4ad . dc . cb (cor. to

theor. 3 I Geom.) > 4ad' . d'c . cb, or greater than its equal

CA" . c'u, by the preceding theorem.

THEOREM XXV.

Of all Right Parallelopipeds Given in Magnitude, that which

has the Smallest Surface has ail its Faces Squares, or is a

Cube. And reciprocally, of all Parallelopipeds of Equal

Surface, the Greatest is a Cube.

For, by theorems 19 and 21, the right parallelopiped hav-

ing the smallest surface with the same capacity, or the great-

est capacity with the same surface, has a square for its base.

But, any face whatever may be taken for base : therefore, in

the parallelopiped whose surface is the smallest with the same

capacity, or whose capacity is the greatest with the same sur-

face, any two opposite faces whatever are squares : conse-

quently, this parallelopiped is a cube.

THEOREM XXVI.

The Capacities of Prisms Circumscribing the Same Right

Cylinder, are Respectively as their Surfaces, whether Total

or Lateral.

For, the capacities are respectively as the bases of the

prisms; that is to say (th. 11), as the perimeters of their

bases; and these are manifestly as the lateral surfaces: whence
the proposition is evident.

Cor. The surface of a right prism circum.scribing a cylin-

der, is to the surface of that cylinder, as the capacity of the

former, to the capacity of the latter.

Def. The Archimedean cylinder is that which circum-

scribes a sphere, or whose altitude is equal to the diameter of

its base.

THEOREM XXVI I.

The Archimedean Cylinder has a Smaller Surface than any
other Right Cylinder of Equal Capacity ; and it is Greater

than any other Right Cylinder of Equal Surface.

Let c and c denote two right cylinders, of which the first

is Archimedean, the other not : then,

1st, If . . , c = c'', surf, c < surf, c':

2dly, if surf, c = surf, c', c > r.'.

For,
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For, having circumscribed about the cylinders C, C, the

right prisms p, p', with square bases, the former will be a

cube, the second not : and the following series of equal ra-

tios will obtain, viz, c : p : : surf, c : surf, p : : base c : base p :

:

base c' : base ?'
: : e' :

p'
: : surf, c' : surf. p'.

Then, 1st : when c = c'. Since c : ? : : c' : p', it follows

that p =r p'; and therefore (th. 25) surf, p < surf. p'. But,

surf, c ; surf, p : : surf, c' : surf, p'
; consequently surf, c <

surf. c'. Q; E. ID.

2dly : when surf, c = surf. c'. Then, since surf, c : surf.

P : : surf, c' : surf, p', it follows that surf. P = surf, p' ; and

therefore (th. 25) p > p'. But c : p : : c' :
p'

j consequently

c > c'. Q. E. 2d.

THEOREM XXVIII,

Of all Right Prisms whose Bases are Circumscribable about

Circles, and Given in Species, that whose Altitude is

Double the Radius of the Circle Inscribed in the Base,

has the Smallest Surface with the Same Capacity, and the

Greatest Capacity with the Same Surface.

This may be demonstrated exactly as the preceding theo-

rem, by supposing cylinders inscribed in the prisms,

Scholmm.

If the base cannot be circumscribed about a circle, the right

prism which has the minimum surface, or the maxinmm ca-

pacity, is that whose lateral surface is quadruple of the sur-

face of one end, or that whose lateral surface is two-thirds

of the total surface. This is manifestly the case v^'ith the

Archimedean cylinder •, and the extension of the property

depends solely on the mutual connexion subsisting between

the properties of the cylinder, and those of circumscribing

prisms.

THEOREM XXIX.

The Surfaces of Right Cones Circumscribed about a Sphere,

are as their Solidities.

For, it may be demonstrated, in a manner analogous to

the demonstrations of theorems 1 1 and 26, tliat these cones

are equal to right cones whose altitude is equal to the radius

of the inscribed sphere, and whose bases are equal to the

total surfaces of the cones : therefore the surfaces and solidi-

ties are proportional.

THEOREM
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THKOREM XXX.

The Surface or the Solidity of a Right Cone Circumscribed

about a Sphere, is Directly as the Square of the Cone's
Altitude, and Inversely as the Excess of that Altitude over

the Diameter of the Sphere.

Let VAT be a right-angled triangle which,

by its rotation upon VA as an axi^:, generates a

right cone ; and bda the semicircle which by
a like rotation upon VA forms the inscribed

sphere : then, the surface or the solidity of

the cone varies as —

.

For, draw the radius CD to the point of contact of the

semicircle and vt. Then, because the triangles vat, vdc,

are similar, it is at : vt : : cd : vc.

And, by compos, at : at + vt : : cd : cd + cv = VA ;

Therefore at^ : (at + vt) at : : cd : va, by multiply-

ing the terms of the first ratio by at.

But, because vb, vd, va are continued proportionals,

it is VB : va : : vd" : VA^ : : CD" : at' by sim. triangles.

But CD : VA : : at' : (at + vt) at by the last j and these

mult, give cd . vb : vA^ : : CD^ : (at + vt)at,

or VB : CD : : va'' : (at + vt)at = cd . —

.

But the surface of the cone, which is denoted by it . at* +
TT . AT . vt *, is manifestly proportional to the first member
of this equation, is also proportional to the second member,

or, since cd is constant, it is proportional to , or to a third

proportional to bv and a v. And, since the capacities of these

circumscribing cones are as their surfaces (th. 29), the truth

of the whole proposition is evident.

Lemma 2.

The difference of two right lines being giveii, the third

proportional to the less and the greater of them is a minimum
when the greater of those lines is double the other.

Let Av and bv be two right

lines, whose difference ab is ; [

given, and let ap be a third A B V P

proportional to bv and av
;

then is AP a minimum when av = 2bv.

beiuj = 3'H1593. See vol. ii. pa. 45.

For,
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For, since ap : Av : : Av : bv ;

By division ap : ap — av : : av : av — bV;
That is, AP : VP : : av : ab.
Hence, vP . av = ap . ab.

But VP . AV is either = or < -]-Ap- (cor. to th. 31 Geom.
and th. 23 of this chapter).

Therefore ap . ab<^ap': whence 4ab<ap, or ap>4ab.
Consequently, the minimum value of ap is the quadruple of

AB j and in that case pv = va = 2ab. q. e. d*.

THEOREM XXXI.

Of all Right Cones Circumscribed about the Same Sphere,
the Smallest is that whose Altitude is Double the Diame-
ter of the Sphere.

For, by th. 30, the solidity varies as — (see the fig. to

that theorem) : and, by lemma 2, since va — vb is given, the

third proportional — is a minimum when vA = 2ab. q. e.d.

Cor. 1 . Hence, the distance from the centre of the sphere

to the vertex of the least circumscribing cone, is triple the

radius of the sphere.

Cor. 2. Hence also, the side of such cone is triple the

radius of its base.

THEOREM XXXir.

The Whole Surface of a Right Cone being Given, the In-

scribed Sphere is the Greatest when the Slant Side of the

Cone is Triple the Radius of its Base.

For, let c snd c' be two right cones of equal whole sur-

face, the radii of their respective inscribed spheres being

• Tliou^li the evidence of a single demonstration, conducted on sound
mathematical principles, is really irresistible, and therefore needs no corro-

boration; yet it is frtcjuen ly conducive as well to mental improvement, as

to mental delight, to obtain like results from different processes. In this

view it will be advantageous to the student, to confirm the truth of several

of the propositions in this i:liapter by means of the fiuxional analysis. Let

the truth enunciated in the above lemma be taken for an example: and let

AB be denoted by a, AV by x, Bv by x — a. Then we shall have x — a • x : :

x: , the third proportional; which is to be a mmimuin. Hence, the
X —a

fluxion of this fraction will be equal to zero (Flux. art. 51). That is (Flux.

x'.i'— 2iiix , „
arts, 19 and 30), = o. Consequent". v i» - 2ax = o, aud i = 2a,

(i-«)»
or aV = 2ab, as above.

denoted
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denoted by r and r'; let the side of the cone c be triple

the radius of its base, the same ratio not obtaining in c ;

and let c" be a cone similar to c, and circumscribed about

the same sphere with c'. Then, (by th. 3 1 j surf, c" < surf, c'

:

therefore surf. c"< surf. c. But c''and c are similar, there-

fore all the dimensions of c" are less than the corresponding

dimensions of c : and consequently the radius r' of the sphere

inscribed in c" or in c', is less than the radius R of the sphere

inscribed in c, or R > r'. q. e. d.

Cor. The capacity of a right cone being given, the in-

scribed sphere is the greatest when the side of the cone is

triple the radius of its base.

For the capacities of such cones vary as their surfaces

(th. 2^).

THEOREM XXXIil.

Of all Right Cones of Equal Whole Surface, the Greatest

is that whose Side is Triple the Radius of its Base : and

reciprocally, of all Right Cones of Equal Capacity, that

whose Side is Triple the Radius o( its Base has the Least

Surface.

For, by th. 29, the capacity of a right cone is in the com-

pound ratio of its whole surface and the radius of its inscribed

sphere. Therefore, the whole surface being given, the ca-

pacity is proportional to the radius of the Inscribed sphere

;

and consequently is a maximum when the radius of the in-

scribed sphere is such ; that is, (th. 32) when the side of the

cone is triple the radius of the base*.

Again, reciprocally, the capacity being given, the surface

is in the inverse ratio of the sphere inscribed: therefore, it

is the smallest when that radius is the greatest; that is (th. 32)

when the side ofthe cone is triple the radius of its base. q. E. D.

* Here again a similar result may easily be deduced from the method of

fluxions. Let the radius of the hase be denoted by x, the slant side of the

cone by z, its whole surface by a-, and 3-141593 by tt. Then the circum-

ference of the cone's base will be 2w.t, its area w.t', and the convex surface

^iz. The whole surface is, therefore, = irx^ + -nxz : and this being = a',

a«
WE have z = x. But the altitude of the cone is equal to the square root

of the difference of the squares of the side and of the radius of the base; that

a* 2o*'
is, it is= al/{

-^ ). And this multiplied into i of the area of the base,

a* la}
viz. by 1-t:i«, gives \t:x'^a/[ —— ), for the capacity of the cone. Now,

Vol. III. E theorem
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THEOREM XXXIV.

The Surfaces, whether Total or Lateral, of Pyramids Cir-

cumscribed about the Same Riji;ht Cone, are respectively

as their Solidities. And, in particular, the Surface of a

Pyramid Circumscribed about a Cone, is to the S;:rface of

that Cone, as the Solidity of the Pyramid is to the Solidity

of the Cone ; and these Ratios are Equal tq those of the

Surfaces or the Perimeters of the Bases.

For, the capacities of the several solids are respectively as

their bases ; and their surfaces are as the perimerors of those

bases : so that the proposition may manifestly be demon-
strated by a chain of reasoning exactly like that adopted in

theorem 11.

THEOREM XXXV.

The Base of a Right Pyramid being Given in Species, the

Capacity of that Pyramid is a Maximum with the Same
Surface, and, on the contrary, the Surface is a Minimum
with the Same Capacity, when the Height of One Face is

Triple the Radius of the Circle Inscribed in the Base.

Let P and p' be two right pyramids with similar bases, the

height of one lateral h.ce of p being triple the radius of the

circle inscribed in the base, but this proportion not obtain-

ing with regard to p'
: then

1st. If surf, p = sm-f. p', p > p'.

2dly. If . . p ^ . . p', surf p < surf. p'.

For, let c and c' be right cones inscribed within the pyra-

mids P and p'
: then, in the cone c, the slant side is triple

the radius of its base, while this is not the case with respect

to the cone c'. Therefore, if c = c, surf, c < surf, c j and,

if surf. G zz surf, c', c > c' (th, 33).

this being a maximum, its square must be so likewise (Flux, ait.53), that is,

a*JL^ - 2'naH*
. , or, rtjecting tlie deiiomiiiator, as constant, a"*x'^—2'n a''x* must

be a maximum. This, in fluxions, is S-i^ir - SwaVi = o ; whence we have

fl2 _ 4^(1 — o, and consequently x—,^— ; and a* = 4iii'. Substituting
Alt

this value of o? for it, in the valbc of s above given, there results

cfi 47r.t*

a =r — — X = — a' = 4ar - X = 3x, Therefore, the side of the cone
mx 111

js tripli- the radius of its base. Or, the square of the altitude is to the square,

of the radius of the base, as 8 to 1, or, to ttie square of tiie diameter of th«

l»ase, as 2 to 1.

But
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But, 1st. surf, p : surf, c : : surf, p'
: surf. C';

whence, if surf, p = surf, p', surf, c n surf, c'

;

therefore c >c'. But p : c : :
p'

: c'. Therefore p > p'.

2dly, p : c : :
p': c'. Theref. ifp = p', c=:c' : consequently

surf, c < surf. c'. But, surf, p : surf, c : : surf, p'
: surf. c'.

Whence, surf, p < surf. p'.

Cor. The regular tetracdron possesses the property of the

minimum surface vvith the same capacity, and of the maxi-

mum capacity with the same surface, relatively to all right

pyramids with equilateral triangular bases, and, a fortiori,

relatively to every other triangular pyramid.

THEOREM XXXVI.

A Sphere is to anv Circumscribing Solid, Bounded by Plane

Surfaces, as the Surface of the Sphere to that of the Cir-

cumscribing Solid.

For, since all the planes touch the sphere, the radius drawn
to each point of contact will be perpendicular to each re-

spective plane. So that, if planes be drawn through the cen-

tre of the sphere and through all the edges of the body, the

body will be divided into pyramids v.-iiose bases are the re-

spective planes, and their common altitude the radius of the

sphere. Hence, the sum of all these pyramids, or the whole
circumscribing solid, is equal to a pyramid or a cone whose
base is equal to the whole surface of-that solid, and altitude

equal to the radius of the sphere. But tiie capacity of the

sphere is equal to that of a cone whose base is equal to the

surface of the sphere, and altitude equal to its radius. Con-
sequently, the capacity of the sphere, is to that of the circum-

scribing solid, as the surface of the former to the surface of
the latter : both having, in this mode of considering them, a

common altitude, q. e. i>.

Cor. 1. All circumscribing cvlinders, cones, &c, are to

the sphere they circumscribe, as their respective surfaces.

For the same proportion will subsist between their indefi-

nitely small corresponding segments, and therefore between
their wholes.

Cor. 2. All bodies circumscribing the same sphere, are

respectively as their surfaces.

E2 THEOREM
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THEOREM XXXVII.

The Sphere is Greater than any Polyedron of Equal
Surface.

For, first it may be demonstrated, by a process similar to

that adopted in theorem 9, that a regular polyedron has a

greater capacity than any other polyedron of equal surface.

Let p, therefore, be a regular polyedron of equal surface to

a sphere s. Then P must either circumscribe s, or fall partly

within it and partly out of it, or fall entirely within it. The
first of these suppositions is contrary to the hypothesis of the

proposition, because in that case the surface of ? could not

be equal to that of s. Either the 2d or 3d supposition there-

fore must obtain ; and then each plane of the surface of p
must fall either partly or wholly within the sphere s : which-
ever of these be the case, the perpendiculars demitted from
the centre of s upon the planes, will be each less than the

radius of that sphere: and consequently the polyedron P

must be less than the sphere s, because it has an equal base,

but a less altitude, q. e. d.

Cor. If a prism, a cylinder, a pyramid, or a cone, be
equal to a sphere either in capacity, or in surface ; in the first

case, the surface of the sphere is less than the surface of any
of those solids ; in the second, the capacity of the sphere is

greater than that of either of those solids.

The theorems in this chapter will suggest a variety of
practical examples to exercise the student in computation.
A few such are given below.

EXERCISES.

Ex. 1 . Find the areas of an equilateral triangle, a square,

a hexagon, a dodecagon, and a circle, the perimeter of each
being 36.

Ex. 2. Find the difference between the area of a triangle

whose sides are 3, 4, and 5, and of an equilateral triangle of
equal perimeter.

Ex. 3. What is the area of the greatest triangle which
can be constituted with two given sides 8 and 1 1 : and what
will be the length of its third side .•'

Mx. 4. The circumference of a circle is 12, and the pe-

rimeter of an irregular polygon which circumscribes it is 15 :

what are their respective areas ?

Er»
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Ex. 5. Required the surface and the solidity of the great-

est parallelepiped, whose length, breadth, and depth, together

make I8?

Ev. 6. The surface of a square prism is 546 : what is its

solidity when a maximum ?

Ex. 7. The content of a cylinder is 169-645968 : what

is its surface when a minimum ?

Ex. 8. The whole surface of a right cone is 20rO61952:
what is its solidity when a maximum ?

Ex. 9. The surface of a triangular pyramid is 43*30127 :

what is its capacity when a maximum?

Ex. 10. The radius of a sphere is 10. Required the so-

lidities of this sphere, of its circumscribed equilateral cone,

and of its circumscribed cylinder.

Ex. 1 1. The surface of a sphere is 28-'274337, and of an

irregular polyedron circumscribed about it 35 : what are their

respective solidities .''

Ex. 1 2. The solidity of a sphere, equilateral cone, and

Archimedean cylinder, are each 500 : what are the surfaces

and respective dimensions of each ?

Ex. 13. If the surface of a sphere be represented by the

number 4, the circumscribed cylinder's convex surface and
whole surface will be 4 and 6, and the circumscribed equila-

teral cone's convex and whole surface, 6 and 9 respectively.

Show how these numbers are deduced.

Ex. 14. The solidity of a sphere, circumscribed cylinder,

•and circumscribed equilateral cone, are as the numbers 4, 6^

and 9. Required the proofs,

CHAPTER IIL

FLANE TRIGONOMETRY CONSIDERED ANALYTICALLY.

Art. 1, There are two methods which are adopted by

mathematicians in investigating the theory of Trigonometry:

the one Geometrical, the other Algebraical. In the former,

the various relations of the sines, cosines, tangents, &c, of

single or multiple arcs or an^^Ies, and those of the sides and

angles of triangles, ire deduced immediately from th«

figures
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.figures to whicli the several enquiries are referred; each in-

dividual case requiring its own particular method, and resting

on evidence peculiar to itself. In the latter, the nature and
properties of the linear-angular quantities (sines, tangents,

&c,) being first defined, some general relation of these quan-

tities, or of them in connection with a triangle, is expressed

by one or more algebraical equations ; and then every other

theorem or precept, of use in this branch of science, is de-

veloped by the simple reduciion and transformation of the

primitive equati(.ui. Thus, the rules for the three funda-

mental cases in Plane Trigonom.etry, which are deduced by
three independent geometrical investigations, in the second

volume of this Course of Iv^itliematics. are obtained alge-

braically, by forming, between the three daia and the three

unknown quantities, three equations, and obtaining, in ex-

pressions of known terms, the value of each of the unknown
quantities, the others being exterminated by the usual pro-

cesses. Each of these general methods has its peculiar ad-

vantages. The geometrical method carries conviction at every

step ; and by keeping the objects of enquiry constantly before

the eye of the student, serves admirably to guard him against

the admisdon of error : the algebraical method, on the con-

trary, requiring little aid from first principles, but uierely at

the commencement of its career, is more properly mechanical

than mental, and requires frequent checks to prevent any

deviation from truth. The geometrical method is direct,

and rapid, in producing the requisite conclusions at the out-

set of trigonometrical science; but slow and circuitous in

arriving at those results which tl\e modern state of the science

requires: while the algebraical method, though sometimes

circuitous in the developement of the mere elementary theo-

rems, is very rapid and fertile in producing those curious and
interesting formulae, which are wanted in the higher branches

. of pure analysis, and in mixed mathematics, especially in

Physical Astronomy. This mode of developing the theory

of Trigonometry is, consequently, well suited for the use of
the more advanced student: and is therefore introduced here

with as much bre\'ity as is consistent with its nature and
utiKty.

2. To save the trouble of turning very frequently to the

2d volume, a few of the principal definitions, there given,

are here repeated, as follows :

The SINE of an arc, Is the perpendicular let fall from one

pf its extremities upon the diameter of the circle which

passes through the other extremity.

The
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The COSINE of an arc, Is the sine of the complement of

that arc, and is equal to the part of the radius comprised be-

tween the centre of the circle and the foot of the sine.

The TANGENT of an arc, is a line which touches the circle

in one extremity of that arc, and is continued from thence

till it meets a line drawn from or througii the centre and
through the other extreaiity of the arc.

The SECANT of an arc, is the radius drawn through one

of the extremities of that arc and prolonged till it meets the

tangent drawn from the other extremity.

The VERSED SINE of an arc, is that part of the diameter

of the circle which lies between the beginning of the arc and

the foot of the sine.

The COTANGENT, cosECANTj and covERSED SINE of an

arc, are the tangent, secant, and versed sine, of the comple-

ment of such arc,

3. Since arcs are proper and adequate measures of plane

angles, (the ratio of any two plane angles being constantly

equal to the ratio of the two arcs of any circle whose centre

is the angular point, and which are intercepted by the lines

whose inclinations form the angle), it is usual, and it is per-

fectly safe, to apply the above names without circumlocution

as though they referred to the angles themselves ; thus, when
we speak of the sine, tangent, or secant, of an angle, we
mean the sine, tangent, or secant, of the arc which measures
that angle j the radius of the circle employed being knowi;!.

4. It has been shown in the 2d vol. (pa. 6), that the tan-

gent is a fourth proportional to the cosine, sine, and radius

;

the secant, a third proportional to the cosine and radius; the

cotangent, a fourth proportional to the sine, cosine, and ra-

dius ; and the cosecant a third proportional to the sine and
radius. Hence, making use of the obvious abbreviations,

and converting the analogies into equations, we have

tan. = , cot. = , sec. = , cos. = >.
COS. sine ('"js. sine.

Or, assuming unity for the rad. of the circle, these will become
sin. c s. 1 1

Cos. sill.
'

*

*

COS.
*

sin.'

These preliminaries being borne in mind, the student njay

pursue his investigations. »

5. Let ABC be any plane triangle, of C
which the side BC opposite the angle A is /\
denoted by the small letter a, the side AC ¥ \ V
opposite the angle B by the small letter /;, / pj \
and the side ab opposite the angle c by A

the
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the small letter c, and CD perpendicular to ab : then Is,

C = a . cos B -i- b . cos A.

For, since AC = ^, ad is the cosine of A to that radius;

consequently, supposing radius to be unity, we have ad = A .

cos, A. In like manner it is bd = a . cos. B. Therefore,

AD -jr BD =. AB — c =. a . cos. B \- b . COS. A. By pursuing

similar reasoning with respect to the other two sides of the

triangle, exactly analagous results will be obtained. Placed

together, they will be as below :

a = b . cos. c + c . cos.

b -n a . cos. c -f c . cos. a\ (I.)

c = a . cos. i& -\- b . cos.

6. Now, if from these equations it were required to find

expressions for the angles of a plane triangle, when the sides

are given ; we have only to multiply the first of these equa-

tions by tf, the second by 6, the third by c, and to subtract

each of the equations thus obtained from the sum of the other

two. For thus we shall have

b^ + c"' — a^ = 2bc . cos. a, whence cos. a = —-~

—

-

,.aV

'ihc

f c* ~ b' = 2ac . cos. b, , . . cos. b =
2ric

a + b^ -^ c =: 2ao . cos. c, . . . cos. c =. ———
[ (11.)

7. More convenient expressions than these will be de-

duced hereafter : but even these will often be found very con-

venient, when the sides of triangles are expressed in integers,

and tables of sines and tangents, as well as a table of squares,

(like that in our first vol.) are at hand.

Suppose, for example, the sides of the triangle are 6r= o20,

b = 562, c = 800, being the numbers given in prop. 4, pa.

161, of the Introduction to the Mathematical Tables: then

we have

l,^ J^C- ~ at— 85344-4- log. = .5-931 1751

'2bc . . = 899200 log = 5-9538080

The remainder being log. cos. A, or of 1S°20'= olrmbTT
Again, a' -f t' - b^ =. i'26556 . . . log. = 5-62'j9760

2ac . , . — 512000 . . . log. = 5-7092700

The remainder being log. cos. b, or of 3y''35'= y92u70fiO

Then 1S0° - (IS'' '20' + 33=35') = 1C8°5' = c j where all

the three angles are determined in 7 lines.

8. If it were wished to get expressions for the sines, in-

stead of the cosines, of the angles; it would merely be nc-

i;es8ary to introduce into the preceding equations (marked II),

instead
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instead of COS. a, cos. b, &c, their equivalents cos. A= V(l —
sm\ a), cos. b = v^(l - sin\ b), &c. For then, after a httle

reduction, there would result,

sin. A = -1 \/2a'b'-{-2a'c-\-2b'r— {a*+ b-'-\-c')']
2/'C

I

sin. B = —s/2ab-+2a^r-\-2b^r - (a"^+^H t"*) y

- —\/2a-b''+ 2a: c- + 26V - (a^ -t- b" -\-c^)
lah J

Or, resolving the expression under the radical into its four

constituent factors, substituting s for a-\-b-\-c^ and reducing,

the equations will become

sin. A = -f-\/^s(^s~rO(is-^)('s-f)"]

lac

sm. c

he

sin. B = -i-v/is(is-«)(4s-6)(4s-c)
J.

(in.)

sin. c = ^s/k^K\^- ^)'<k^ - bA\.^-c)
ah

These equations are moderately well suited for computation

in their latter form ; they are also perfectly symmetrical

:

and as indeed the quantities under the radical are identical,

and are constituted of known terms, they may be represented

by the same character ; suppose K : then shall we have

2k . 2k . ^K
sin. A = -r . . . sm. b = — ... sm. z =.—-.. . iin.\

he ac ab ^ '

Hence we may immediately deduce a very important theo-

rem : for, the first of these equations, divided by the second,

ffives -T^-^— = 7 , and the first divided by the third gives° sin. B 6 ^ °

sin. A a , ,=— : whence we have
bin. c c

sin. A : sin. b : sin. c ex. a : b : c . . . (IV.)

Or, in ViTords, the sides ofplane triangles are proportional to

the sines of their opposite angles. (See th. 1 Trig. vol. ii).

9. Before the remainder of the theorems, necessary in the
solution of plane triangles, are investigated, the fundamental
proposition in the theory of sines, &-c, must be deduced, and
the method explained by which Tables of these quantities,

confined within the limits of the quadrant, are made to ex-
tend to the whole circle, or to any number of quadrants

whatever. In order to this, expressions must be first ob-
tained for the sines, cosines, &c, of the sums and differences

of any two arcs or angles. Now, it has been found (I) that

a z= b . cos. c + c . cos. b. And the equations (IV) give
, sin. B **iii. C ri t • • 1
zi a . . . . . c zz. a . . oubstitutmg these va-

sin. /. . 511), A °

lues
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lues of b and c for them in the preceding equation , and mul-

tiplying the whole by —^-^, it will become

sin. A rr sin. B . cos. c + sin. c . cos. B.

But, in every plane triangle, the sum of the tliree angles is

equal to two right angles ; therefore, B and c are equal tc the

supplement of a : and, consequently, since an angle and its

supplement have the same sine (cor. 1 , pa. 3, vol. ii), we have

sin. (B + c) = sin. B . cos. c -f- sin. c . cos. b.

10. If, in the last equation, c become subtractive, then

•would sin. c manifestly become subtractive also, while the

cosine of c would not chanj^e its sign, since it would still con-

tinue to be estimaied on the same radius in the same direc-

tion. Hence the preceding equation would become
sin. (b — c) = sin. b . cos. c — sin. c . cos. B.

1 1 . Let c' be the complement of c, and I O be the quarter

of the circumference : then will c' = ^ O ~ <-^ sin. c'= cos. c,

and COS. c' = sin. c. But (art. 10), sin. (b — c) = sin. B .

cos. c' — sin. c' COS. B. Therefore, substituting for sin. c',

COS. c', their values, there will result sin. (b — c') = sin. B .

sin. c — COS. B . COS. c. But because c' = |0 — c, we have

sin. (b-c') = sin.(B + c — ^O) = sin. [(b +c)-|0^ = —
sin. [^O — (b + c)] = — COS. (b + c). Substituting this value

of sin. (,B — c) in the equation above, it becomes cos. (b-|-c)

= COS. b . cos. c — sin. b . sin. C
12. In this latter equation, if c be made subtractive, sin. c

will become — sin. c, while cos. c will not change : conse-

quently the equation will be transformed to the following,

viz, COS. (b — c) = COS. B . cos. c 4- sin. B . sin. c.

if, instead of the angles B and c, the angles had been A and

B *, or, if A and B represented the arcs which measure those

angles, the results would evidently be similar: they may
therefi^re be expressed generally by the two following equa-

tions, for the sines and cosines of the sums or difi'erences of

any two arcs or angles:

sin. (a. ± b) = sin. a . cos. b ± sin. B . cos. A. 7 .y ^

COS. (A ± B) = cos. A . cos. B + siu. A . sin. B. 3

13. "We are now in a stare to trace completely the muta-

tions of the sines, cosines, cs.c, as they relate to arcs in the

various parts of a circle; and thence to perceive that tables

.
which apparently are inchicied within a quadrant, are, in fact,

applicable to the whole circle.

Imagine that the radius MC of the circle, in the marginal

figure, coinciding at first with Ac, turns about the point c

(in the same manner as a rod would turn on a pivot) and tlius

foraiinii
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forming successively with ac all

possible angles : the point M at

its extremity passing over all

the points of the circumference

aba'b'a, or describing the whole
circle. Tracing this motion at-

tentively, it will appear, that at

the point a, where the arc is

nothing, the sine is nothing also,

while the cosine does not differ

from the radius. As the radius mc recedes from AC, the sine

PM keeps increasing, and the cosine CP decreasing, till the

describing point M has passed over a quadrant, and arrived

at B : in that case, pm becomes equal to CB the radius, and

the cosine cp vanishes. The point m continuing its motion,

bevond b, the sine p'm' will diminish, while the cosine CP',

which now fails on the contrary side of the centre c will in-

crease. In the figure, p'ai' and cp' rue respectively the sine

and cosine of the arc am', or the sine and cosine of abm',

which is the supplement of a'm' to -iQj half the circumfe-

rence: whence it follows that an obtuse angle (measured by
an arc greater than a quadrant) has the same sine and cosine

us its supplanent; the cosine, however, being reckoned sub-

tractive or negative, because it is siluated contrariwise with

regard to the centre c.

When the describing point M has passed over 4O, or half

the circumference, and has arrived at a', the sine p'm' va-

nishes, or becomes nothing, as at the point a, and the cosine

is again equal to the radius of the circle. Here the angle

ACM has attained its maximum limit ; but the radius CM may
still be supposed to continue its motion, and pass below the

diameter aa'. The sine, which will then be p' m", will con
sequently fall below the diameter, and will augment as M
moves along the third t^uadrant, while on the contrary cP",

the cosine, will diminish. In this quadrant too, both sine

and cosine must be considered as negative •, the former being

on a contrary side of the diameter, the latter a contrary side

of the centre, to what each was respectively in the first qua-

drant. i\t the point b', where the arc is three-fourths of the

circumference, or |Oj the sine p'm" becomes equal to the

radius CB, and the cosine cp" vanishes. Finally, in the fourth

quadrant, fi-om b' to A, the sine p"'m"', always below aa', di-

minishes in its progress, while the cosine cp'", v/hich is then

found on the same side of the centre as it was in the first

quadrant, augments till it becomes equal to the radius ca.

Hence, the sine in this quadrant is to be considered as nega-

tive
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tlve or subtractive, the cosine as positive. If the motion of

w were continued through the circumference again, the cir-

cumstances would be exactly the same in the fifth quadrant

as in the first, in the sixth as in the second, in the seventh as

in the third, in the eighth as in the fourth : and the like

would be the case in any subsequent revolutions.

14. If the mutations of the tangent be traced in like man-
ner, it will be seen that its magnitude passes from nothing to

infinity in the first quadrant ; beconif^s negative, and de-

creases from infinity to nothing in the second ; becomes po-

sitive again, and increases from nothing to infinity in the

third quadrant j and lastly, becomes negative again, and de-

creases from infinity to nothing, in the fourth quadrant.

15. These conclusions admit of a ready confirmation, and

others may be deduced, by means of the analytical expres-

sions in arts. 4 and 12. Thus, if a be supposed et^ual to |0>
in equa. v, it will become

cos. (^O =i^ b) — cos.|0 . COS. B T sin. iQ • sin. B,

sin. (4O + b) = sin. -^O • cos. B ± sin. B . cos. ^O*
But sin. 10 = rad. = 1 ; and cos. ~0 =^ 0:

so that the above equations will become
cos. (jO ± b) z= =p sin. B.

sin. (40 ± B) = COS. B.

l^'rom which it is obvious, that if the sine and cosine of an

arc, less than a quadrant, be regarded as positive, the cosine

of an arc greater than JQ ^^'^ less than 'O vvill be negative,

but its sine positive. If B also be made = ^O 5 then shall

we have cos. 40= — !; sin. i O = 0-

Suppose next, that in the equa. v, A = | O » then shall

we obtain

cos. (i^ O ± B) = — COS. B .

sin. (40 ± B) r=:+: sin. b;

which indicates, that every arc comprised between i O and

iOj or that terminates in the third quadrant, will have its

sine and its cosine both negative. In this case too, when
B = ^O, or the arc terminates at the end of the third qua-

drant, \vc shall have cos. ^O = 0> sin. |0 = — 1.

Lastly, the case remains to be considered in which A = ^0»
or in which the arc terminates in the fourth quadrant. Here
the primitive equations (V) give

cos. (|0 — b) = db sin. B .

sin. (I O — b) = ~" cos. B ;

so that in all arcs between |0 and 0» ^^c cosines are posi-

tive and the sines negative.

16. The changes of the tangents, with regard to positive

and negative, may be traced by the application of the pre-

ceding
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ceding results to the algebraic expression for the tangent j viz,

tan. = — . For it is hence manifest, that when the sine and
COS.

cosine are either both positive or both negative, the tangent

will be positive; which will be the case in the first and third

quadrants. But when the sine and cosine have different

signs, the tangents will be negative, as in the second and

fourth quadrants. The algebraic expression for the cotan-

gent, viz, cot. = ^^, will produce exactly the same results.

The expressions for the secants and cosecants, viz, sec. =
— , cosec. r= -T— show, that the signs of the secants are the
cos sill,

°

same as those of the cosines ; and those of the cosecants the

same as those of the sines.

The tiiagjiUude of the tangent at the end of the first and

third quadrants will be infinite ; because in those places the

sine is equal to radius, the cosine equal to zero, and therefore

—
- = oo (infinity). Of these, however, the former will

COS. \ y /

be reckoned positive, the latter negative.

17. The magnitudes of the cotangents, secants, and cose-

cants, may be traced in like manner ; and the results of the

13th, 14th, and 15th articles, recapitulated and tabulated as

below.
180° 270" 360'
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arcs ; and In order that these expressions may have the more
jrenerality, give to the radius any value R, instead of confining

it to unity. This indeed may always be done in an expres-

sion, however complex, by merely rendering all the terms

homogeneous ; that is, hj/ mtdtiplying each ttrm by such a

poxvcr oJ'r as shall make it of the some dimension, as the

term hi the equation -which has the highest dimension. Thus,

the expression for a triple arc

sin. 3a = 3sin. A — 4sin^. a (radius = 1)

becomes when radius is assum.ed = r,

R- sin. 3a =2= R^ 3sin. A — 45in^ . A
3r^ sill. A -4 siii-'. A

or sm. 3a rz .

Hence then, if consistently with this precept, r be placed

for a denominator of the second member of each equation V
(art. I'i), and if a be supposed equal to B, we shall have

. ,
sin. A . COS. A + 'in. a . cms, a

sm. (a + A) = .

rr, • • ^ 2 sin. A . COS. A
That IS, sm. 2a = .

R

And, in like manner, by supposing b to become successively

equal to 2a, 3a, 4a, &c, there will arise

sin. A . COS. 2a + COS. A . sin. 2a
'

sm. 3a zz

sin. a . COS. 3a + cos a . sin, 3a V, /TrTTT \
sm. 4a = f

(.viii.;
R

sin. a . COS. 4a + cos. a , sin. 4a
sm. 5a =

R

And, by similar processes, the second of the equations

just referred to, namely, that for cos. (a + b), will give suc-

cessively)

^ cos'. A - sin'. A "^

cos. 2a = I

R
I

^ COS, A , COS. 2a— sin. a . sin. 2a
COS. 3 A 3Z

co<. A . COS 3a— sin. A .sin 3a t \^-^'/
COS. 4A =

I

CO-;. A . co>i. 4 a — sin. a . sin. 4a I

COS. 5a— I

R J

19, If, in the expressions for the successive multiple'^ of

the sines, the values of the several cosines in terms of the

sines were substituted for them ; and a like process were
adopted with regard to the multiples of the cosines, other

expressions would be obtained, In which the multiple sines

would be expressed in terms of the radius and sine, and the

multiple cosines in terms of the radius and cosine.
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As sm. A =
sin. 2a = 2sa/r-— s'

sin. 3a = 3s- 4s^

sin. <tA = (4s — 8s')\/r^— s-

sln 5a = 5s-20s'+l6s5

sin. 6a = {6s - 3'2s^+ 32s0 Vr^-
&c. &c.

Cos. A = C

co«. 2a = 2c^- 1

COS. 3a = 4c^ — 3c

COS. 4a = 8c »- 8c^+ I

cos.5\= ]6c^-20c-+5c
COS. 6a = 32c- - 480-* -h 18c*-

1

&c. &c*.

1- (X.)

> (XL)

Other very convenient expressions for multiple arcs may
be obtained thus

:

Add together the expanded expressions for sin. (b + a),

sin. (b — a), that is,

add - - sin. (b 4- a) — sin. b . cos. a + cos. b . sin. a^

to - - sin. (b — a) = sin. B . COS. a — cos. B. sin. A;

there results sin. (b-1-a) + sin. (b — a) = 2 cos. a . sin. b:

whence, - sin. (b-|-a) rr 2 co3. a . sin. b — sin. (b — a).

Thus again, by adding together the expressions for cos (b+ a)
and cos. (b — a), we have

cos. (b+ a) + cos. (b — a) = 2 cos. a . cos. b;

whence, cos, (b+ a) = 2 cos. a . cos. b — cos. (b — a).

Substituting in these expressions for the sine and cosine of

B + A, the successive values A, 2a, 3a, 8lc, instead of B j the

following- series will be produced.

sin. 2a = 2 cos. A sm. A
sin. 2a — sin. A.

sin. 3a — sin. 2a.

sin.(?i— 1)a— sin.(n — 2)a."'

cos. A— COS. 0(=1).
cos. 2a— COS. A.

COS. 3a— COS. 2 A.

COS. (;?— 1)A— COS. (w — 2) A ."^

Several other expressions for the sines and cosines of mul-

tiple arcs, might readily be found : but the above are the

most useful and commodious.

sin. 3a = 2 cos. A
sin. 4a = 2 cos. A
sin. WA = 2 COS. a

cos. 2a = 2 COS. A
COS. 3a = 2 COS. A
COS. 4a = 2 COS. A
COS. «A = 2 COS. A

(T.)

(xL)

* Here we have omitted the powers of r that were necessary to render all

the terms homologous, merely that the expressions might be brought in upon
the pagej but they may easily be supplied, when needed, by the rule in

art. IS.

20. From
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-r-i 1 • • ^ - sin A . CO' A . •11 1

20. From the equation sin 2a = , it will be

easy, when the sine of an arc is known, to find that of its

half. For, substituting for cos a its vahie ^(r- — sin" a),

there will arise sin 2a = -. This squared

gives R* sin* 2a = 4r* sin* a — 4 sin* A.

Here taking sin A for the unknown quantity, we have a qua-

dratic equation, which solved after the usual manner, gives

sin a = ±^iR'±-lRv/R'-sin^-2A.
If we make 2a = a', then will a = ^a', and consequently

the last equation becomes

siniA' = ± ^|R^±4R^/R- — siir a /
(XII.)

or shi-iA' — ± Y 'v/2r- ± '2r cos a':

by putting cos a' for its value ^/r^ — sin^ a' multiplying the

quantities under the radical by 4, and dividing the whole se-

cond number by 2. Both these expressions for the sine of

half an arc or angle will be of use to us as we proceed.

2 1 . If the values of sin (a + b) and sine (a — b), given by

cqua. V, be added together, there will result

• /IN.-/ \ 2 sin A . cos B ,

sm (a + b) + sm ( a — b) =: ; whence,

sin A . cosB =iR.sin (a+ b) + -iRsinCA— b) . . (XIII.)

Also, taking sin (a — b) from sin (a + b), gives

• / I \ • / N 2 sin B . COS A ,

Sin (A -j- b) — sm (a — b) = ; whence,

sin b . cos A =-^R . sin (A+ b) — ^R . sin (a — b) . . (XIV.)

"When A := B, both equa. xiii and xiv, become
cos A . sin A = I^R sin 2a . . (XV.)

22. In like manner, by adding together the primitive ex-

pressions for cos (a + b), cos (a — b), there will arise

/ I \ I / \ 2 cos A . cos B ,

COS (a + b) -{- cos (a — b) = ; whence,

cos A . cos B = i-R . cos (a + b) + ^R . cos(a— b) (XVI.)

And here, when A = b, recollecting that when the arc is

nothing the cosine is equal to radius, we shall have

cos* A = i R . cos 2a -I- |R^ . . . (XVII.)

23. Deducting cos (A + b) from cos (a — b), there will

remain
, . / I \ 2 sin A . sin B ,

COS (a — b) — cos (a -{- b) = i whence,

sin A. sin b = 4«. . cos (A — b) — iR . cos (a + b) (XVIII.)

When A = B, this formula becomes
sin- A =: 4^R* - |R . cos 2a . . . (XIX.)

24. Mul-
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24. Multiplying together the expressii^ns for sin (a -f b)

and sin (a — b), equation v, and reducing, there results

sin (a + b) -sin (a — b) — sin* A — sin' B

And, in like manner, multiplying together the values of

cos (a + b) and cos (a — u), there is produced

cos (a + b) . cos (a — b) = cos'' A — cos' B

Here, since sin' A — sin* b, is equal to (sin A -f sin b) x
(sin A — sin b), that is, to the rectangle of the sum and dif-

ference of the sines ; it follows, that the first of these equa-

tions converted into an analogy, becomes

sin (A — b) : sin a — sin b : : sin A 4- sin b : sin (A + b) (XX.)'

That is to say, t/ie sine of the difference of any two arcs or

angles, is to the difference of their sines, as the sum of those

sines is to the sine of their sum.

If A and b be to each other zs n -\- 1 to n, then the pre-

ceding proportion will be converted into sin A : sin (n -j- 1)a —
sin nA :: sin {n 4-1)^+ sin ''A : sin {'2n 4- 1)a. ... (XXL)

These two proportions are highly useful in computing a

table of sines ; as will be shown in the practical examples at

the end of this chapter.

25. Let us suppose A + B = A^ and A — b = b' 5 then the

half sum and the half difference of these equations will give

respectively A = J-(a' + b'), and b = Ka' -- b'). Putting these

values of A andB, in the expressions of sin A.cosB, sin B.cos A,

cos A . cos B, sin A . sin B, obtained in arts. 21, 22, 23, there

would arise the following fprmulse :

sin 4(a' + b') . cos j(a' — b') = |^R(sin a' + sin b'),

sin 4(a' — b') . cos |-(a' + b ) = vR(sin a' — sin b'),

cos ^(a' 4- b) . cos J-(a' — b ) = iR(cos a' + cos b),

sin y(A' -H h') . sin J-(a' — B ) = ir(cos b — cos a).

Dividing the second of these formulae by the first, there will

be had
sin §(a'— b') . CO'; ^{t,' +&') sin \{a'--b.') cos|(a'+b') __ s'n a'— sin b'

sin ^(a'+b') . >-o^ ^i^a' — b') cos|(a'— b') ' sin ^(a' + b') sin a' + shi b'*

T» • si ' *^"
1 cos R , ^ ,, , ,

But smce — = — , and— = —
-, it follows, that the two

Co R sill tan' '

factors of rhe first member of this equation, are

••
"^

'

-y and—---;—-, respectively : so that the equation

•r 1 1
t^" ^(a' — b') sin a' - sin b' i-v-tj-^t x

manifestly becomes —~-^,—-{ — ;

—

-—
•„ . . » (XXIL)

tan a(a + b ) sin a' + sin B '

This equation is readily converted into a very useful pro-

portion, viz, The SU711 of the sines of iivo arcs or angles, is to

their difference, as the tangent q; half the sum of those arcs

or angles, is to the tangent if half their dfference.

Vol. hi. F 2^. Operat-
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26. Operating with the third and fourth formulae of the

preceding article, as we have already done with the first and

second, we shall obtain

tfin^ a' tf B') . tnn ^(a' — b') cos b' — cos a'

R* cos a' cos b''

In like manner, we have by division,

sinA'-r ioB' sini(\'+B') If f , ,\ sin a' + sin B/
^4. i / » ' „'\

, -,=—r—,—r,= tani(A'+B): -. ,=coty(A -b);

sin a'— sub' ,, , ,. sin a'- sin b' , .,

-—7- > = tan ^(A - b') . . .
—-7

, — cot i(A + B j,
•)SA +COS*' ^ cos B— cos A

cos a' + cos b' cot ^(a' + b')

cosb' — co.s a' tan ^(a' — b')

Making B = 0, in one or other of these expressions, there

results,

sin a' , 1

-, =. tan i^A =:—r-,.
1 + cos A

^•"*'
=COt-iA'=-V-,. r (Xxii.)

1 — cos a' tan ^a'

1 + cos a' cot \k' .
,

1

> = ~ = cot* 4- A' = Z-;
1 - cos a' tan \k' ^

t;ii.* ^a'

These theorems will find their application in some of the

investigations of spherical trigonometry.

(27. Once more, dividing the expression for sin (A i b)

by that for cos (a ± b), there results

sin (a ± e") sin A . cos i{ ± sin B . cos. a

Cos (a± b) Cos a . cus B T sin a . sin b
'

tlien dividing both numerator and denominator of the second

fraction, by cos A . cos E, and recollecting that — =: — , we

shall thus obtain

tan Ca ± b) R (tan a ± tan b)

R
~~

R^ T tan a . lan B '
•

11 / _i- \ R*(tan A ± tan b) /wttt \
or, lastly, tan (a ± b) = -——

. . . . (XaIII.)
' ^

'

^ ' r2 T tail a . tan b ^ '

Also, since cot = , we shall have
tan

R- T tan A . tan B
cot (a ± B) = :

' =
^ ' i.in ^A± B) tun A ± lan B

which, after a little reduction, becomes

cot (a ± B)= . . . . (AAlV.)
' cut B ± cot A

2S. We might now proceed to deduce expressions for the

tangents, cotangents, secants, &c, of multiple arcs, as well as

some
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some of the usual formulae of verification in the constructioa

of tables, such as

sin (5i° + A)+sin (54°-A)-?in (I8°+ A)-sia (18"- A)=siri (90''~a)
j

sin A + sin {M'^ — a) + sin (7L'° + a) = sin i,36" + a) + sin (7*2" - A).

&c. &g.

But, as these enquiries would extend this chapter to too

great a length, we shall pass them by; and merely investi-

gate a few properties where more than two arcs or angles are

concerned, and which may be of use in some subsequent:

parts of this volume.

29. Let A, B, c, be any three arcs or angles, and suppose?

radius to be unity ; then
, sin A. sin c + sinn. sin (a + b + c)

sin (b + C) =: —
;^

. -,
^ sin (A + B)

For, by equa. v, sin (a +B -f- c) = sin A . cos (b + c) + cos A ,

sin (b -f C), which, (putting cos B . cos c — sin b . sin c for

cos (b + c)), is =: sin a . cos B . cos c — sin A . sin b . sin c -j-

cos A . sin (b + c) ; and, multiplying by sin b, and adding
sin A . sin c, there results sin A . sin c-f-sin B . sin (a Hb+ C)

=sin A . cos B . cos c . sin B -{- sin A . sin c . cos" b -\- cos A .

sin B . sin (b + c) = sin a . cos B . (sin b . cos c + cos b . sin c)

-{- cos A . sin B . sin (e 4- c) = sin A . cos b . sin (b + c) +
cos A . sin A . sin (b -}- c) = (sin A . cos b -|- cos a . sin b) X
sin (b + c) =: sin (a + b) . sin (b + c). Consequently, by
dividing by sin (a + b), we obtain the expression above
given.

In a similar manner it may be shown, that

, . sin A . sin c — sin b . sin (a - B + c)
sm (B - C) = 7-7 r-' \

sin (a — b)

30. If A, B, C, D, represent four arcs or angles, then writ-?

ing c + D for c in the preceding investigation, there will

result,

, , , X sin A • sin ('C+ D) + sin E . sin (a + b+c + d)
sm (b -1- c + d) = —

r
—i -^

'^
' ' ^ sin (a+b) •

A like process for five arcs or angles will give

. , , . , . sin A . sin (c+ D+ e) + sin B . sin (a + E + C+ Dtt- e)5m (B+C + D+E)= i
. , ^„, ,

^ sm (a + B) ^

And for any number, a, b, c, &c, to l,

/ , , ^ sin A . sin(c+ D+ .. L) + sin B. sin fA +

B

-f- C + ...L)

sm (b+c+ ....l)=: r—

;

r- „
^ ' ' sm (a + B)

31. Taking again the three a, b, e, we have
sin (b — c) = sin B . cos C — sin c . cos b,

sin (c — a) = sin c . cos a — sin a . cos C,

sin (a — B)= sin a . cos B — sin B . cos A?

Multiplving the first of these equations bv sin a, the second

F2 by
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by sin B, the third by sin c; then adding together the equs--

tions thus transformed, and reducing ; there will result,

sin A . sin (b — c) -f-sin B . sin (c — a) r sin c . sin (a — B)r:0,

cos A . sin (b — c) + co3 b . sin (c — a)+ cosc . sin (a — b^ = 0.

These two equations obtaining for any three angles whar-
ever^ apply evidently to the three angles of any triangle.

32. Let the series of arcs or angles a, B, c, d . . . . l, be

contemplated, then we have (art. 24),

sin (a + b) . sin (a — b) = sin* A — sin* B,

sin (b + c) . sin (b — c) =z sin* b — sin* c,

sin (c + d) . sin (c — d) — sin* c — sin* d.

&c. &c. Sec.

sin (l + a) . sin (l — a) = sin" L — sin* A.

Jf all these equations be added together, the second mem-
ber of the equation will vanish, and of consequence we shall

have
sin (a+b) . sin (a — B)+sin (b+c) . sin (b — c)-l-&c ..

.

+ sin (L4-A)-f-sin (l — a)= 0.

Proceeding in a similar manner with sin (a— b), cos (a + b),

sin (b — c), cos (b + c), &c, there will at length be obtained

cos (a+ b) .sin (a — B)-f cosCb+c) . sin (b — c)+ &c. ..

+ cos (l + a) . sin (l — a) = 0.

33. If the arcs A, B, c, &c . . . . L form an arithmetical

progression, of which the first term is 0, the common differ-

ence d', and the last term l any number ?i of circumferences;

then will B — a= d', c — B = d', &c, a -r b = 2d', b -}- c = 3d',

&c : and dividing the whole by sin d', the preceding equa-

tions will become
sin d' -}- sin 3d' + sin So' + &c = O, 7 f^vy \

cos d' + cos 3d' -f- cos 5d' + &c = 0. 3
^"^ ''

If e' were equal 2d', these equations would become

sin D'+sin (D;-i-E')+sin (d''-|-2e'} + sin (d + 3e')+ &c = 0,

cos d'+cos (d' -]' e') + cos (d'+2e') -f cos (d' -f 3e'J + &c= 0.

34. The last equation, however, only shows the sums of

sines and cosines of arcs or angles in arithmetical progres-

sion, when the common difference is to the first term in the

ratio of 2 to I . To investigate a general expression for an
infinite series of this kind, let

5= sin A + sin (a + B)+ sin (A4-2D) + sin (a+ 3b)+&c.
Then, since this series is a recurring series, whose scale of

relation is 2 cos b— 1, it will arise from the developement of

a fraction whose denominator is 1 — 2z. cos b + 3*, making

Z= I.

Now
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j^_ 1 • r • •1,1 sin A + s fsiri r A + b) — 3 sin a . cos b1
jNOw this fraction will be = =- ;

'
«

Therefore, when z = Ij we have
tin A + i^i'i (a + b) — 5 sin a . ros b i i • > ^ •

s = —
: and this, because 2 sin a .

X — 2 cos B

COS E = sin (a -f b) + sin (a — b) (art. 21), is equal to
sill A — sin {a— b) „ . . . . , ^ , , I , ,\—r-; T—. But, since sm a — sin b' = 2 cosifA + B )

.

2(1— COS b)
' 2 \ I /

sin 4^(a'— b'), by art. 25, it follows, that sin A — sin (a— b)=
2 cos (a — is) sin ^b ; besides which, we have 1 — cos b =:

2 sin^ -^B. Consequently the preceding expression becomes
5 = sin A + sin (A + b) + sin (a + 2b) + sin (a -f 3b) + &c,

ad wfinitum =^^^ (XXVI.)
•^ 2 sill ^B ^ '

35. To find the sum of w + i terms of this series, we have
simply to consider that the sum ofthe terms past the {n + 1 )th,

that is, the sum of sin [a + (w + 1)b] + sin [a -\- {n + 2)b]+
sin [A + (« + 3)b] + 8cc, ad infinitujUy is, by the preceding

theorem, =^2i_±iJ!_L\i!J, Deducting this, therefore, from
2 sm f B o ' '

the former expression, there will remain, sin a -{- sin (a + b)
4- sin (a + 2b) + sin (A + 3b) + .... sin (a + 7?b) =:
co-^(A-fB)-eos [A + (?i + ^)B] _ sin (a + |mb) .sin^(7i+l)B ™^

2 bin 4b siri ^b ' ^
'^

By like means it will be found, that the sums of the
cosines of arcs or angles in arithmetical progression, will be
cos a 4- cos (a + b) + cos (a + 2b) + cos (a + 3b) f &c,

Md infinitum = - ~^t^ (XXyill.)

Also,

cos a + cos (a + b) + cos (a + 2b) + cos (a + 3b) + . . . .

/ , , N COS (a +i«B) . sin i(n+ 1)b /wtv \
(cos A + 7Zb) =

. , —. . . . (XXIX.)^
sill |B ^ '

36. "With regard to the tangents of more than two arcs,

the following property (the only one we shall here deduce) is

a very curious one, which has not yet been inserted in works
of Trigonometr)', though it has been long known to mathe-
maticians. Let the three arcs a, b, c, together make up
the whole circumference, O '• then, since tan (a + b) =
R« (lan A + tan b),, .

, , .
, ^ ,

K^-tau A tan '^ ^ equa. xxiii), \ve have R^ x (tan A 4- tan b +
tan c) = R- X [tan A+ tan b — tan (a + b)] = R^ X (tan A +

R2(tan A + tan b)< , , ..... •

tan B —
) =, by actual multiplication and re-

duction, to tan A . tan b . tan c, since tan c = tan [O —
(A + b)] = - tan (A + b) = ~ -, by what has

preceded,
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preceded in this article. The result therefore is, that MeJ

sum of the ta)igents of any three arcs "which together consti-

tute a circle^ multiplied by the square of the radius ^ is equal

to the product of those tangents. . . . (XXX.)
Since borh arcs in the second and fourth quadrants have

their tangents considered negative, the above property will

apply to arcs any way trisecting a semicircle ; and it will

therefore apply to the angles of a plane triangle, which are,

together, measured by arcs constituting a semicircle. So
that, if radius be considered as unity, we shall find that, the

sum ofthe tangents of the three angles of any plane triangle^

is equal to the continued product of those tangents. (XXXI.)

37. Having thus given the chief properties of the sines,

tangents, &c, of arcs, their sines, products, and powers, we
shall merely subjoin investigations of theorems for the 2d and
3d cases in the solutions of plane triangles. Thus, with re-

ispect to the second case, where two sides and their include4

angle are given

:

By equa iv, a : b : : sin a : sin B.

By compos. ] . > / • . r
• • .

J J- • f a+ b : a—b : : sm A + sm b : sm A - sm b.
and division \

But, eq. XXII, tan i(A -\- b) : tan -|(a— b) : : sin a + sin b :

sin a — sin B ; whence, ex equal. a^b : a— b :: tan i

(

a -f- b) :

tan |(A - B) (XXXII.)
Agreeing with the result of the geometrical investigation,

at pa. 10, vol. ii.

38. If, instead of having the two sides <?, b, given, we know
their logarithms^ as frequently happens in geodesic opera-

tions, tan -Ka—'B) may be readily determined without first

finding the number corresponding to the logs, of a and b.

For if ii and b were considered as the sides of a right-angled

triangle, in which <p denotes the angle opposite the side a,

then would tan ^ = -r- Now, since a is supposed greater

than bf this angle will be greater than half a right angle, or

it will be measured by an arc greater than i of the circumfer-

1 .^ rni » / I x-x \ tans— tauio
ence, or than -i O- i hen, because tan {(5—-lO)=-— —'—'

'
.

** ' vr 8 / 1 j^ tan ^ tail io

and because tan -^O — R = 1 , we have

tan(^-^0)=(: -^)-^1+tKt-'-
And, FroiTi the preceding article,

a— b tan^iA — b) tan^f^— b) ,—7 -= —
f,

' = -—^ : consequently,a+b tani(A + B) Cut |c ^ •"

tan^(A-B) = cot-lc . tan (p - iO) . . • (XXXIII.)

From
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1

From this equation we have the following practical rule

:

Subtract the less from the greater of the given logs, the re-

mainder will be the log tan of an angle : from this angle

take 45 degrees, and to the log tan of the remainder add the

log cotan of half the given angle ; the sum will be the log

tan of half the difference of the other two angles of the plane

triangle.

39. The remaining case is that in which the three sides of

the triangle are known, and for which indeed \vq have al-

ready obtained expressions for the angles in arts. 6 and 8.

But, as neither of these is best suited for logarithmic compu-

tation, (however well fitted they are for instruments of in-

vestigation), another may be deduced thus : In the equation

\ • Z.2 + (.1 _ o2

for cos A, (given equation iij, viz, cos A = —
, it we

substitute, instead of cos A, its value 1— 2 sin^ ^A, change

the signs of all the terms, transpose the I , and divide by 2,

we shall have sin i\ — — = ——

.

Here, the numerator of the second member being the pro-

duct of the two factors (a-^b— c) and {a — b-\-c), the equa-

tion Will become sin^ iA = —^ . JBut, since
wc

Ka+ b-c)= i{a-i-b-^c)-Cyzndi{a-b-\-c)=i[a-\-b -{-€)- by

if we put s z=. a -{ b -{- c, and extract the square root, there

will result,

sin^A = v^ .

I
In like

^ ^.^ ^^ ^ ^ (js-.)
.
Qs-Q^

y (XXXIV.)
manner

? . . / (iS-Q).(iS-c) V^

JsiniB=V --
. /

-» (is-«K(|s-i) \
ci'n li' — V -L • /Sin fC = ^ ab

These expressions, besides their convenience for logarith-

mic computation, have the further advantage of being per-

fectly free from ambiguity, because the half of anyangle of
a plane triangle will ahv^ays be less than a right angle.

40. The student will fiml it advantageous to collect into

one place all those formulae which relate to the computation

of sines, tangents, &c* j and, in aiother place, those which
are of use in the solutions of plane triangles : the former of

* Wliat is here given bring only a hriff sketch of an inexhaustible sub-
ject; the reader who wishes to pursue it further is refeired to the copious
Introduct on to our \]atheniati<'al Table*;, nnd tlie c )nipreliensive treatise*

on Trigonometry, by EiiierS"ii and maHv oiher modern writers on the same
subject, where he will find bis curiosity rionly gratifiejj.

these
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these are equations v, vin, jx, x. xi, x, xi, xii, xili, XIV,

XV, XV?, XVII, xviii, XIX, XX, XXII, xxii, xxm, xxiv,
XXVII ; the latter are et^ua. ii, iii, iv, vii, xxxii, xxxiii,

XXXIV.
'lo exempHfy the use of some of" these formulae, the fol-

lowing exercises are subjoined.

Exercises.

Ex. 1. Find the sines and tangents of 15*, 30°, 4-5°, 60%
and 75° : and show how from thexjce to find the sines and

tangents of several of their suDmuUiples.

First, with regard to the arc of 4 3°, the sine and cosine arc

manifcbtly equal \ or they form the perpendicular and base

of a right-angled triangle whose hypothenuse is equal to the

assumed radius. ,Thus, if radius be R, the sine and cosine of

45% will each be =^/ {vC=^-rV \= \^\/2. If R be equal to

1, as is the case with the tables in use, then

sin 45° = cos 45° = V" = '707 1068.

tan 45° = — — 1 • r: — = cotangent 45*.
CO!) Mil "

Secondly, for the sines of 60^ and of 30°
: since each angle

in an equilateral triangle contains 60^, if a perpendicular be

demitted from any one angle of such a triangle on the oppo-

site side, considered as a base, that perpendicular will be the

sine of 60°, and the half base the sine of 30% the side of the

triangle being the assumed radius. Thus, if it be R, we shall

have 4r for the sine of 30% and v/r- — ^r''^: iR^3, for the

sine of 60°. Wiien R = 1, these become

sin 30' =: -5 sin 60° = cos 30° = -8660254.

Hence, tan 30" = rr^ = 4? = iv/3 = '5773503,

tan G0« = '^ = \/3 = 1-7320508.

Consequently, tan 60° = 3 tan 30°.

Thirdly, for the sines of 15° and 75*, the former arc is thc|

half of 30°, and the latter is the complement of that half arc.

Hence, substituting i for R and \ 3, for cos A, in the ex-

pression sin 4:A = i: jV 2R' + 'Ik cos A . . . (equa. Xii),

it becomes sin 15° = i-\/ Q, — VS = -2588190.

Hence, sin 75°= cos 15"= \/ \ — ^(2— v'S) = j \/ 2 -f y ' 3 =
-i^y^ = -9659258.

4

^ , , ,A -^'n 2588190
Consequently, tan lo° = — =z 77—-rr = '2679492.

' -^ Cos VM'Jzba

And, tan 75°-
.,,,g^,,-^

= 3-7320508.

Now,
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Now, from the sine of 30^, those of 6", 2°, and 1*, may
easily be found. For, if 5a = ><0°, we shall have, from
equation x, sin 5a = 5 sin A — 20 sin^ A + 1^» sin* A : or, if

sin A = X, this will become 16.i^ — 2(Kr' + 5.r = '5. This

equation solved by any of the approximating rules for such

equations, will give x = "1045285, which is the sine of 6".

Next, to find the sine of '2°, we have again, from equa-

tion X, sin 3a = 3 sin A — 4 sin^ A : that is, if .r be put for

sin 2°, 'Ax — 4x^ = '1045285. This cubic solved, gives

X — -034 8995 = sin 2^
Then, if s = sin 1°, we shall, from the second of the equa-

tions marked x, have 2s v^ 1 — s^ = '0348995 ; whence s is

found = •On4524 = sin 1°.

Had the expression for the sines of bisected arcs been ap-

plied successively from sin 15°, to sin T';iO', sin 3^45', sin

1^5l'|', sin 56]-', &c, a different series of values might have
been obtained: or, if we had proceeded from the quinqui-

section of 45°, to the trisection of 9", the bisection of 3", and
so on, a different series still would have been found. But
what has been done above, is sufficient to illustrate this me-
thod. The next example will exhibit a very simple and
compendious v/ay of ascending from the sines of smaller to

those of larger arcs.

Ex. 2. Given the sine of 1°, to find the sine of G", and
then the sines of 3°, 4°, b°, 6°, 7°, 8", 9°, and IG'', each by a

single proportion.

Here, taking first the expression for the sine of a double

arc, equa. x, we have sln2°=2 sin 1°-/ 1 —sin- r'= '0348995,

Then it follows from the rule in equa. xx, that

sin r : sin 2° — sin T : : sin 2°-fsIn 1°
: sin 3° = -O.SSS.GCO

sin 2°
: sin 3°— sin 1°

: : sin 3° + sin 1°
: sin 4° = '0697565

sin 3°
: sin 4° — sin 1° : : sin 4*^ + sin 1°

: sin 5° = '0871557
sin 4° : sin 5*— sm 1" : : sin 5° + sin 1°

: sin 6" — '1045285
sin 5° : sin 6';5-sih 1°

: : sin G°-f-sin l' : sin 7° = -1218693
sin 6°

: sin 7°-sin 1°
: : sin 7°-}-sin 1° : sin S" — '1391731

sin V : sin 8° -sin r : : sin S'-j-sin T : sin 9^ = '1564375
sin S° : sin 9°— sin 1°

: : sin 9°+ sin 1°
: sinlO° = '1736482

To check and verify operations like these, the proportions

should be changed at certain stages. Thus,
sin r : sin' 3^- sin 2"

: : sin 3° + sin 2"
: sin 5°,

sin 1° : sin 4° -sin 3^
: ; sin 4° + sin 3°

: sin 7°,

sin 4"
: sin 7°— sin 3°

: : sin 1° + sin 3"
: sin 10^.

The coincidence of the results of these operations with the
analogous results in the preceding, will manifestly establish

the correctness of both.

Cor.
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Cor. By the same method, knowing the sines of 5% 10',

and 15% the sines of 20^, 25\ 35°, 55°, 65% &c, maybe
found, each by a single proportion. And the sines of l", 9",

and 10% will lead to those of 19% 29% 39% &c. So that the
sines may be computed to any arc : and the tangents and
other trigonometrical lines, by means of the expressions in

art. 4, &c.

£x. 3. Find the sum of all the natural sines to every mi-

nute in the quadrant, radius = 1

.

In this problem the actual addition of all the terms would
be a most tiresome labour : but the solution by means of

equation xxvii, is rendered very easy. Applying that theo-

rem to the present case, we have sin (a -f 4''b) = sin 45%
sin i-{n-\- OB=sin 4j°0'30", and sin \b =:sin 30'. Therefore
sin 45° X sin 45° f)' 30" „ ^ „ ,

• ,

~T:7r^ = 3438'24G (4G5 the sum required.
sin 30' '

From another method, the investigation of which is omitted

here, it appears that the same sum is equal to i(cot 30
'+ 1).

Ea.-. 4. Explain the method of finding the logarithmic

sines, cosines, tangents, secants, &c, the natural sines, cosines,

&c, being known.
The 7iatural sines and cosines being computed to the ra-

dius unity, are all proper fractions, or quantities less than

unity, so that their logarithms would be negative. To avoid

this, the tables of logarithmic sines, cosines, &c, are com-
puted to a radius of 10000000000, or 10'°; in which case

the logarithm of the radius is 10 times the log of 10, that is,

it is 10.

Kence, if ^ represent any sine to radius 1, then 10'°X5=
sine of the same arc or angle to rad 10'°. And this, in logs

is, log 10" ^ = 10 log 10 + log 5 = 10 + log s.

The log cosines are found by the same process, since the

cosines are the sines of the complements.

The logaritnmic expressions for the tangents, &c, are de-

duced thus

:

Tan =rad — . Theref. log tan =. log rad + log sin — log

cos = 10 + log sin — log cos.

Cot =— . Therf.logcot = 2lograd— logtan= 20— logtan.

Sec =z~- . Therf.logsec= 2lograd— logcos= 20— logcos.

Cosec

=

-.— . Therf. 1, cosec =r 2 log rad — log sin r=20— log sin.

^r 1 • chord- (2 sill ,'- arc)' 2 x sin- 4 arc
Versed sme = , = —

-

•• = -^^—

.

cliani 2 rad rad

Therefore, log vers sin = log 2 -|- 2 log sin y arc — 10.

Ex. 5.
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Ea:. 5. Given the sum of the natural tangents of the an-

gles A and B of a plane triangle r= y 1601988, the sum of the

tangents of the angles b and c = 3'S165577, and the conti-

nued product, tan a . tan B . tan c = 5'30i7057 : to rind the

angles a, b, and c.

It has been demonstrated in art. 36, that when radius is

unity, the product of the natural tangents of the three angles

of a plane triangle is equal to their continued product. Hence

the process is this :

From tan A + tan B + tan c = 5-301-7057

Take tan a + tan b . . . . = 3-1601988

Remains tan c = 2J_44o069 =tan 65o.

From tan A 1- tan b -}- tan c •— o"y047057
Take tan B f tan c . . . . = 3 8765 577

Remains tan A = 1 •428 1480=tan 55°.

Consequently, the three angles are 55^, 60°, and 65^.

Ex. 6. There is a plane triangle, whose sides are three

consecutive terms in the natural series of integer numbers,
and whose large, t angle is just double the smallest. Required
the sides and angles of that tri.mgle ?

If A, B, c, be three angles of a plane triangle, a, b, c, the

sides respectively opposite to A, b, c ; and s z=. a -\- b -^ c.

Then from equa. in and xxxiv, we have
2 /

^^^ ^ ~ i;7V 4:S(is-rt).(As-^).(i,S— c),

, • T ,(4s-«) .(4s-/>)
and sm ^c = a/- —r^ -.

(to

Let the three sides of the required triangle be represented

by :i'i -r + 1, and x -f 2 ; the angle A being supposed oppo-

site to the side .r, and c opposite to the side .r + 2 : then the

preceding expressions will become
2 3jc + 3 x + 3 i+i x-l

sm A =: 7T—

7

-r. \/——- .
—-— .

—-— .
—— .

[x+l) .{x+2)^ 2 2 2 2

smic = V —7-7 -^—

.

Assuming these two expressions equal to each other, as they

ought to be, by the question ; there results, after a little re-

duction, \/7 r: —

—

—y or3.i'(.r— I )z=(.r + '2)% an equation

whose root is 4 or — |. Hence 4, 6, and 6, are the sides of

the triangle.

sin A = -^, a/ '-5 7 i _i ^ J?^./~ rs 7 — 2- 1 s ^/7= i./7.bill A — 7-^^ i ••2-2»2 — 5 'TV 4 . -4 • ' — T-T-TV • — irv '•

sin B =tVv''7; sin c = ^\/l; sin ic= x/^.^-.^.r^Wl.
The angles are, a = 41°-4i^9603 = 41°24' 34" 34'",

B = 55<''771191 = 55 46 16 18,

c zz S2O-819206 = 82 49 9 8.

jE^. 7.
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Ex\ 7. Demonstrate that sin 18° = cos 72° is = {-R

(— 1 + ^/5), and sin 54' = ccs 3U° is = iR( 1 + ^/5).

Ex. 8. Demonstrate that the sum of the sines of two arcs

which together make 60°f is equal to the sine of an arc

which is greater than 60° by either of the two arcs : Kx. gr.

sin 3' + sin SD^S?' = sin SO^S' ; and thus that the tables may
be continued by addition only.

JE.i. 9. Show the truth of the following proportion : As
the sine of half the difference of two arcs, which together

make 60'', or 90°, respectively, is to the difference of their

sines; so is 1 to ^/3, or -v/2, respectively.

Ex\ 10. Demonstrate that the sum of the squares of the

sine and versed sine of an arc, is equal to the square of double

the sine of half the arc,

Ex. 11. Demonstrate that the sine of an arc is a mean
proportional between half the radius and the versed sine of

double the arc. /

Ex. 12. Show that the secant of an arc is equal to the

sum of its tangent and the tangent of half its complement.

Ex. 13. Prove that, in any plane triangle, the base Is to

the difference of the other two sides, as the sine of half the

sum of the angles at the base, to the sine of half their

difference : also, that the base is to the sum of the other two
sides, as the cosine of half the sum of the angles at the base,

to the cosine of half their difference.

Ex. 14. How must three trees. A, B, c, be planted, so

that the angle at A may be double the angle at b, the angle

at B double that at c ; and so that a line of 400 yards may
just go round them .''

Ex. 15. In a certain triangle, the sines of the three an-

gles are as the numbers 17, 15, and 8, and the perimeter is

160. What are the sides and angles .''

Ex. \6. The logarithms of two sides of a triangle are

2-2407293 and 2-5378 191, and the included angle, is 37°20'.

It is required to determine the other angles, without first

finding any of the .sides .''

Er. 17. The sides of a triangle are to each other as the

fractions •
, i) i : what are the angles ^

Ex. 18. Show that the secant of 60°, is double the tan-

gent of 45", and that the secant of 45" is a mean proportional

between the tangent of 45° and the secant of 60°.

Ex. 19.
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Ex. 19. Demonstrate that 4 times the rectangle of the

sines of two arcs, is equal to the difference of the squares of

the chords of the sum and difference of those arcs.

E.v. 20. Convert the equations marked xxxiv into their

equivalent logarithmic expressions ; and by means of them
and equa. iv, find the angles of a triangle whose sides are 5,

Q, and 7.

jEt. 21. Find the arc whose tangent and cotangent shall

together be equal to 4 times the radius.

Ex. 22. Find the arc whose sine added to its cosine shall

be equal to a ; and show the limits of possibility.

Ex. 23. Find the arc whose secant and cotangent shall

be equal.

CHAPTER IV.

SPHERICAL TRIGONOMETRY.

SECTION I.

General Pi^operties of Spherical Triangles.

Art. I. Def.X. Any portion of a spherical surface bounded
by three arcs of great circles, is called a Spherical Triangle,

Def. 2. Spherical Trigonometry is the art of computing
the measures of the sides and angles of spherical triangles.

Def. 3. A right-angled sY)h.Qr\cz\ triangle has one right

angle: the sides about the rip^ht anMe are called lec^s ; the

side opposite to the right angle is called the hypotaenuse.

Def. 4. A quadrantal spherical triangle has one side equal

to 90° or a quarter of a great circle.

Di'f. 5. Two arcs or angles, when compared together, are

said to be alike, or of the same affection., when both are less

than 9(f, or both are greater than 90°. But when one is

greater and the other less than 90^, they are said to be unlike^

or of different affections.

Art. 2. The small circles of the sphere do not fall under
consideration in Spherical Trigonometry; but such onlv as

have the same centre with the sphere itself. And hence it i^

that
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that spherical trigonometry is of so much use in Practical

Astronomy, the apparent heavens assuming the shape of a

concave sphere, whose centre is the same as the centre of the

earth.

3. Every spherical triangle has three sides and three an-

gles : and if any three of these six parts, be given, the re-

maining three may be found, by some of the rules which
will be investigated in this chapter.

4. In plane trigonometry, the knowledge of the three an-t

gies is not sufficient for ascertaining the sides : for in that

case the relations only of the three sides can be obtained, and

not their absolute values : v/hereas, in spherical trigonome-

try, where the sides are circular arcs, whose values depend
on their proportion to the whole circle, that is, on the num-
ber of degrees they contain, the sides may always be deter-

mined when the three angles are known. Other remarkable

differences between plane and spherical triangles are, 1st.

That in the former, two angles always determine the third ;

while in the latter they never do. 2dly. The surface of a
plane triangle cannot be determined from a knowledge of the

angles alone ; while that of a spherical triangle always can.

5. The sides of a spherical triangle are all arcs of great

circles, which, by their intersection on the surface of the

sphere, constitute that triangle.

6. The angle which is contained between the arcs of two

great circles, intersecting each other on the surface of the

sphere, is called a spherical angle; and its measure is the same

as the measure of the plane angle which is formed by two

lines issuing from the same point of, and perpendicular to,

the common section of the planes which determine the con-

taining sides : that is to say, it is the same as the angle made
by those planes. Or, it is equal to the plane angle formed

by the tangents to those arcs at their point of intersection.

7. Hence it follows, that the surface .,-——p4^
of a spherical triangle bag, and the

/^k'^/-~J/^^^\
three planes which determine it, form _ //\/ -^^v \
a kind of triangular pyramid, UcGA,

l}<^i''/\' \-..\

of which the vertex G is at the centre f^f jji?^^'^^

of the sphere, the base abc a portion • y~'^:^^X-_i "^1/
of the spherical surface, and the faces \ / /
AGC, AGB, BGr, sectors of the great ^^a;l___,--^
circles whose intersections determine 1*'

the sides of the triangle.

Def. 6. A line perpendicular to the plane of a great circlej

passing through the centre of the sphere, and terminated by
two
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two points, diametrically opposite, at Its surface, Is called the

axis of such circle ; and the extremities of the axis, or the

points where it meets the surface, are called the po/es of that

circle. Thus, pgp' is the axis, and p, p', are the poles, of the

great circle cnd.
If we conceive any number of less circles, each parallel to

the said great circle, this axis will be perpendicular to them
likewise ; and the points p, p', will be their poles also.

8. Hence, each pole of a great circle is 90° distant from

every point in its circumference -, and all the arcs drawn from

either pole of a little circle to its circumference, are equal to

each other.

9. It likewise follows, that all the arcs of great circles drawn

through the poles of another great circle, are perpendicular

to it : for, since they are great circles by the supposition,

they all pass through the centre of the sphere, and conse-

quently through the axis of the said circle. The same thing

may be affirmed with regard to small circles.

10. Hence, in order to find the poles of any circle, it is

merely necessary to describe, upon the surface of the sphere,

two great circles perpendicular to the plane of the former

,

the points where these circles intersect each other will be the

poles required.

1 1 . It may be inferred also, from the preceding, that if it

were proposed to draw, from any point assumed on the sur-

face of the sphere, an arc of a circle which may measure the

shortest distance from that point, to the circumference of

any given circle ; this arc must be so described, that its pro-

longation may pass through the poles of the given circle.

And conversely, if an arc pass through the poles of a given

circle, it will measure the shorcest distance from any assumed
point to the circumference of that circle.

12. Hence again, if upon the sides, AC and Bc, (produced
if necessary) of a spherical triangle bca, we take the arcs CN,
CM, each equal 90°, and through the radii gn, GM (figure to

art. 7) draw the plane NGm, it is manifest that the point c

will be the pole of the circle coinciding with the plane ngm :

so that, as the lines GM, GN, are both perpendicular to the

common section GC, of the planes ago, bgc, they measure,

by their inclination, the angle of tliese planes ; or the arc Nivi

measures that angle, and consequently the spherical angle

BCA.

13. It is also evident that every arc of a little circle, de-
scribed from the pole c as centre, and containing the same
number of degrees as the arc mn, is equally proper for mea-

suring'
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suring the angle bca ; though it is customary to use only
arcs of great circles for this purpose.

14. Lastly, we infer, that if a spherical angle be a right

angle, the arcs of the great circles which form it, will pass

mutually through the poles of each other : and that, if the
planes of two great circles contain each the axis of the other,

or pass through the poles of each other, the angle which they
include is a right angle.

These obvious truths being premised and comprehended,
the student may pass to the consideration of the following

theorems.

THEOREM I.

Any Two Sides of a Spherical Triangle are together Greater

than the Third.

This proposition is a necessary consequence of the truths

that the shortest distance between any two points, measured
on the surface of the sphere, is the arc of a great circle pass-

ing through these points.

THEOREM II.

The Sum of the Three Sides of any Spherical Triangle is

Less than ^60 degrees.

For, let the sides ac, RC, (fig. to art. 7) containing any
angle a, be produced till they meet again in d: then will the

arcs DAC, DBC, be each 1 80°, because all great circles cut each

other into two equal parts: consequently dac + dbc = 360°.

But (theorem 1) da and db are together greater than the

third side ab of the triangle dab ; and therefore, since

CA -)- CB + DA -\ DB z=: 360°, the sum ca -r cb + ab is less

than 360\ q. e. d.

THEOREM III.

The Sum of the Three Angles of any Spherical Trinngle is

always Greater than Two Right Angles, but Lest than Six.

For, let ABC be a spherical triangle, G
the centre of the sphere, and let the

chords of the arcs ab, bc, AC, be drawn:
these chords constitute a rectilinear tri-

angle, the sum of whose three angles is

equal to two right angles. But the angle X»
at B made by the chords AB, bc, i.^ /ess than the angle OBC^

formed by the two tangents B(/, bc, or less than the angle of

inclination
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inclination of the two planes gbc, gba, which (art. G) is the

spherical angle at D ; consequently the spherical angle at B is

greater than the angle at b made by the chords ab, cb. In

like manner, the spherical angles at A and c, are greater

than the respective angles made by the chords meeiing ai

those points. Consequently, tiae sum of the three angles of

the spherical triangle ACC, is greater than the sum of the

three angles of the rectilinear triangle made-^ the chords *

AByBC, AC, that is, greater than two right angles, a. E. Pd.

2. The angle of inclination of no two of the planes can be

so great as two right angles ; because, in that case, the two
planes would become but one continued plane, and the arcs,

instead of being arcs of distinct circles, would be joint arcs of

one and the same circle. Therefore, each of the three sphe-

rical angles must be less than two right angles ; and conse-

quently their sum less than six right angles, a. e. 3*d.

Cor. 1. Hence it follows, that a spherical triangle may
have all its angles either right or obtuse , and therefore the

knowledge of any two angles is not sufficient for the deter-

mination of the third.

Cor. 2. If the three angles of a spherical triangle be right

or obtuse, the three sides are likewise each equal to, or greater
^

than 90° : and, if each of the angles be acute, each of the sides

is also less than 90°
; and conversely.

Scholium. From the preceding theorem the student may
clearly perceive what is the essential difference between plane

and spherical triangles, and how absurd it would be to apply

the rules of plane trigonometry to the solution of cases in

spherical trigonometry. Yet, though the difference between
the two kinds of triangles be really so great, still there are

various properties which are common to both, and which may
be demonstrated exactly in the same manner. Thus, for ex-
ample, it might be demonstrated here, (as well as with regard

to plane triangles in the elements of Geometry, vol. 1 ) that

two spherical triangles are equal to each other, 1st. When
the three sides of the one are respectively equal to the three

sides of the other. 2dly. When each of them has an equal

angle contained between equal sides : and, 3dly. When they

have each two equal angles at the extremities of equal bases.

It might also be shown, that a spherical triangle is equilateral,

isosceles, or scalene, according as it hath three equal, two
equal, or three unequal angles : and again, that the greatest

side is always opposite to the greatest angle, and the least side

to the least angle. But the brevity that our plan requires,

Vol. III. G compels
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compels us merely to mention these particulars. It may be
added, however, that a spherical triangle may be at once
right-angled -Aud equilateral; which can never be the case

with a plane triangle.

THEOREM IV.

If from the Angles of a Spherical Trianf;le, as Poles, there

be described, on the Surface of the Sphere, Three Arcs of

Great Circles, v^'hich by their Intersections form another

Spherical Triangle; Each Side of this New Triangle will

be the Supplement to the Measure of the Angle which is

at its Pole, and the Measure of each of its Angles the Sup-
plement to that Side of the Primitive Triangle to which ic

is Opposite.

From B, A, and c, as poles, let the

arcs DF, DE, FE, be described, and by
their intersections form another spheri-

cal triangle def; either side, as de, of

this triangle, is the supplement of the

measure of the angle A at its pole ; and

either angle, as r, has for its measure

the supplement of the side AB.

Let the sides AB, Ac, bc, of the primitive triangle, be pro-

duced till they meet those of the triangle def, in the points

I, L, M, N, G, K : then, since the point A is the pole of the

arc DILE, the distance of the points A and E (measured on an

arc of a great circle) will be 90°; also, since c is the pole of

the arc ef, the points c and e will be 90° distant : conse-

quently (art. 8) the point E is the pole of the arc AC. In like

manner it may be shown, that f is the pole of bc, and d that

of AB.

This being premised, we shall have dl^QO", and ie = 90'';

whence dl -f ie = dl -|- el + iL = de -j- iL =: 180'.

Therefore de ~ 180° — IL : that i^, since IL is the measure

of the angle bag, the arc de is = the supplement of that

m.easure. Thus also m.ay it be demonstrated that ef is equal

the supplement to mn, the measure of the angle bca, and.

that DF is equal the supplement to GK, the measure of the

angle ABC : which constitutes the first part of the proposition.

2dly. The respective measures of the angles of the triangle

DEF are supplemental to the opposite sides of the triangles

ABC. For, since the arcs al and BGare each 90°, therefore

is AL + BG = gl -+ AB = 180° ; whence gl =r 180°— ab ;

that is, the measure of the angle D is equal to the supplement

to AB. So likewise may it be shown that ac, bc, are equal

t«
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to the supplements to the measures of the respectively oppo-

site angles E and F. Consequently, the measures of the angles

of the triangle def are supplemental to the several opposite

sides of the triangle abc. a. E. D.

Cor. ] . Hence these two triangles are called supplemental

or pnlar triangles.

Cor. 2. Since the three sides de, ef, df, are supplements

to the measures of the three angles A, B, C; it results that

DE + EP f DP + A + B -H C = ;3 X 1
80'' = 540°. But (th. 2),

DE + EF 4- DF < 360'': consequently A + B + c > ISO^^

Thus the first part of theorem 3 is very compendiously de-

monstrated.

Cor. 3. This theorem suggests mutations that are some-

times of Mid in computation.—Thus, if three angles of a

spherical triangle are given, to find the sides : the student

may subtract each of the angles from 1 SO'^% and the three re-

mainders will be the three sides of a new triangle ; the angles

of this new triangle being found, if their measures be each

taken from 180'', the three remainders will be the respective

sides of the primitive triangle, whose angles were given.

Scholium. The invention of the preceding theorem is due
to Philip Langsberg. Vide, Simon Stevin, liv, 3, de la Cos-
mographie, prop. 3 1 and Alb. Girard in loc. It is often how-
ever treated very loosely by authors on trigonometry : some
of them speaking of sides as the supplements of angles, and
scarcely any of them remarking which of the several triangles-

formed by the intersection of the arcs de, ef, df, is the one
in question. Besides the triangle def, three others may be
formed by the intersection of the semi-

circles, and if the whole circles be consi-

dered, there will be seven other triangles

formed. But the proposition only obtains

with regard to the central triangle (of

each hemisphere), which is distinguished

from the three others in this, that the two
angles A and f are situated on the same
side of EC, the two b and e on the same side of AC, and the

two c and D on the same side of ab.

theorem V,

In Every Spherical Triangle the following proportion obtainSs

viz. As Four Right Angles (or 360"^) to the Surface of a

Hemisphere ; or, as Two Right Angles (or 1S0°) to a Great
Circle of the Sphere ; so is the Excess of the three angles

of the triang^d above 'l\vo Right Angles, to the Area of

the triangle.

G 2 Let
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Let ABC be the spherical triangle. Com-
plete one of its sides as BC into the circle

BCEF, which may be supposed to bound /

the upper hemisphere. Prolong also, at y
both ends, the two sides ab, ac, until \

they form semicircles estimated from each
angle, that is, until Bae = abd = caf = " ^'^ ^^^

ACD = 180°. Then will CBF— ISO^^bfej
and consequently the triangle AEF, on the anterior hemisphere,
will be equal to the triangle bcd on the opposite hemisphere.
Putting itiy VI , to represent the surface of these triangles, p
for that of the triangle eaf, </ for that of cae, and a for that

of the proposed triangle abc. Then a and /«' together (or their

equal a and m together) make up the surface of a spheric lune

comprehended between the two semicircle^- acd, abd, inclin-

ed in the angle A : a and p together make up the lune in-

cluded between the semicircles caf, crf, making the angle c:

a and q together make up the spheric lune included between
the simicircles bce, bae, making the angle B. And the sur-

face of each oi these lunes, is to that of the hemisphere, as the

angle made by the comprehending semicircles, to two right

angles. Therefore, putting ^s for the surface of the hemi-
sphere, we have

180* : a : : -rS I a \- m,
180° : B : : ^s : a -i- g,
180° : c : : is : a + p.

Whence, 180"? : a+b+c : : yS : 'ia -\- m+ p + q= 2a + is -y

and consequently, by division of proportion,

as 180^ : A+B + c- 180« :: i-s : 2a+is-is = 2a;

or, 180° : A + B 4- C - 180« : : is : a = |s .

^^^I^qI^'
Q. E D*.

Cor. 1. Hence the excess of the three angles of any sphe-

rical triangle above two right angles, termed technically the

spherical excess, furnishes a correct measure of the surface of

that triangle.

Cor. 2. If tf = 3- 141 593, and d the diameter of the

sphere, then is 'ffd'- .
-—

^~f^o
= the area of the spherical

triangle.

* This determination of the are > of a spherical tr angle is due to Albert

GiVarrf (who died about 1633). But the riemjustration now commonly giv.n

of the rule was first published by Dr. Wall'-;. It was consi.lered as a n^ le

speculative truth, until General Ri>y, in 1787, emjdoye.l it veiy judiciu'-ssly

in the great Trigonometrical Survey, to correct the eirors''I!..*si<herJcal anj;les.

See Phil. Trans, vol. 80, and the uext chapter of this vglume.

Cor, 3.
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€or. 3. Since the length of the radius, in any circle, is

equal to the length of 57-2957795 degrees, measured on the

circumference of that circle j if the spherical excess be mul-

tiplied by 57'295779o, the product will express the surface

of the triangle in square degrees.

Cor. 4. When a n 0, then a+ b+ c — 180° : and when_
a ~ is, then a -f b -f c = SW^. Consequently the sum of

the three angles of a spherical triangle, is always between 2

and 6 right angles : which is another confirmation of th. 3.

Cor. 5. When two of the angles of a spherical triangle

are right angles, the surface of the triangle varies with its

third angle. And when a spherical triangle has three right

angles its surface is one-eighth of the surface of the sphere.

Remark. Some of the uses of the spherical excess, in the

more extensive geodesic operations, will be shown in the fol-

lowing chapter. The mode of finding it, and thence the area

when the three angles of a spherical triangle are given, is ob-

vious enough ; but it is often requisite to ascertain it by means
of other data, as, when two sides and the included angle are

given, or when all the three sides are given. In the former

case, let a and b be the two sides, c the included angle, and
, , . , ,

. cot ia . cot \h + cos c
E the spherical excess: then is cot _e rr — ——

,^ 2 Sill C

When the three sides a, b, c, are given, the spherical excess

may be found by the following very elegant theorem, dis-

covered by Simon Lhuillier

:

,, a+b+c a + h — c a-h + c —a+l: + c\
tan i-E— */(tan ;— . tan —-— . tan —;— . tan ; ).

The investigation of these theorems would occupy more space

than can be allotted to them in tlie present volume,

THEOREM VI.

In every Spherical Polygon, or surface included by any num-
ber of intersecting great circles, the subjoined proportion

obtains, viz, As Four Right Angles, or 360°, to the Surface

of a Hemisphere ; or, as Two Right Angles, or ISO*', to a

Great Circle of the Sphere ; so is the Excess of the Sum
of the Angles above the Product of 1S0° and Tv/o Less

than the Number of Angles of the spherical polygon, to

its Area.

For, if the polygon be supposed to be divided into as many
triangles as it has sides, by great circles drawn from all the

angles through any point within it, forming at that point the

vertical angles of all the triangles. Then, by th. 5j it will be

3£



S6 SPHERICAL TRIGOr^OMETRY,

as 360=* : J-s : : A + B + c - 1 80° : its area. Therefore, puttin^r

p for the sum of all the angles of the polygon, n for their
number, and v for the sum of all the vertical angles of its

constituent triangles, it will be, by coi^-iposition,

as 360^ : ^s : : p 4- V — 180'' .'n : surface of the polygon.
But V is manifestly equal to 360^ or ISO'' x 2. Therefore,

as 3G0» : xs : : P-0i^2) [S0° ; ^-s .

''"^" ".^1'^"'
, the area of

the polygon, q. e. d.

Cor. 1 . If TT and d represent the same quantities as in

theor. 5 cor. 2, then the surface of the polygon will be ex-

pressed by W" . ^^ .

Cor. 2. If R*'= 57-'J957795, then will the surface of the

polygon in square degrees be = r'^ . (p — (« — 2)180**).

Cor. 3. When the surface of the polygon is 0, then P rr

(n — 2) 180"; and when it is a maximum, that is, when it is

equal to the surface of the hemispliere, then p rr (« — 2) I 80'

-}- 360° = w . I
80'-^

: Consequently p, the sum of all the angles

of any spheric polygon, is always less than 2ii right angles,

but greater than (2y/ — 4) right angles, Ji denoting the num-
ber of angles of the polygon.

GENERAL SCHOMUM.

On the Nature and Measure of Solid Angles.

A Solid angle is defined by Euclid, that which is made by
the meeting of more than two plane angles, which are not in

the same plane, in one point.

Others define it the angular space comprized between
several planes meeting in one point.

It may be defined still more generally, the angular space

included between several plane surfaces or one or more curved

surfaces, meeting in the point which forms the summit of the

angle.

According to this definition, solid angles bear just the same

relation to the surfaces which comprize them, as plane angles

do to the lines by which they are included: so that, as in the

latter, it is not the magnitude of the lines, but their mutual
inclination, which determines the angle ; just so, in the former

it is not the magnitude of the planes, but their mutual incli-

nations whicli determine the angles. And hence all those

geometers, from the time of Euclid down to the present pe-

riod, who have confined their attention principally to the mag-
nitude
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nitucle of the plane angles, instead of their relative positions,

have never been able to develope the properties of this class

of geometrical quantities ; but have affinncJ that no solid

angle can be said to be the half or the double of another, and
have spoken of the bisection and trisection of solid angles,

even in the simplest cases, as impossible problems.

But all this supposed difficulty vanishes, and the doctrine

of solid angles becomes simple, satisfactory, and universal in

its application, by assuming spherical surfaces for their mea-

sure
; just as circular arcs are assumed for the measures of

plane angles*. Imagine, that from the summit of a solid an-

gle (formed by the meeting of three planes) as a centre, any

sphere be described, and that those planes are produced till

they cut the surface of the sphere ; then will the surface of

the spherical triangle, included between those planes, be a

proper measure of the solid angle made by the planes at their

common point of meeting : for no change can be conceived

in the relative position of those planes, that is, in the magni-
tude of the solid angle, without a corresponding and propor-

tional mutation in the surface of the spherical triangle. If,

in like manner, the three or more surfaces, which by their

meeting constitute another solid angle, be produced till they

cut the surface of the same or an equal sphere, whose centre

coincides with the summit of the angle ; the surface of the

spheric triangle or polygon, included between the planes which
determine the angle, will be a correct measure of that angle.

And the ratio which subsists between the areas of the spheric

triangles, polygons, or other surfaces thus formed, will be ac-

curately the ratio \7hich subsists between the solid angles,

constituted by the meeting of the several planes or surfaces,

at the centre ofthe sphere.

* It may be proper to anticipate here the only objection which can be made
to this assumption ; which is founded on the principle, that quantities should

mlwarjs be measured by quanlities of the same kind. But this, often and posi-

tively as it is affirmrd, is l>y no means necessary; nor in many cases is it

possible. To measure is to compare mathematically: and if by comparing
two quantities, whose ratio we know or can ascertain, witli two other quan-
tities whose ratiowe wish to know, the point in question becomes deteimined:

it signifies not at all win therthe magnitudes which constitute on*- ratio, are
like or unlike the magnitudes which constitute tlie other ratio. It is thus that

mathematicians, with [lerfect safety and correctness, make use of s|)i>ceas a
measure of velocity, mass as a measure of inertia, mass and velocit}' con-
jointly as a measure offeree, space as a measure of time, weight as a measure
of density, expansion as a measure of hear., a certain functioi' of planetary
velocity as a measure of distance from the centr;il body, arcs of the same
circle as measures of plane angles j and it is in conformity with this general

procedure that we adopt surfaces, of the same spkere, as measures of solid

angles.

Hence,
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Hence, the comparison of solid angles becomes a matter of
great ease and simplicity : for, since the areas of spherical

triangles are measured by the exce-^s of the sums of their an-
gles each above two right angles (th. 5) 5 and the areas of
spherical polygons of n sides, by the excess of the sum of
their angles above 2?z— 4 right angles (th. 6) •, it follows, that

the magnitude of a trilateral solid angle, will be measured by
the excess oi the sum of the three angles, made respectively

by its bounding planes, above 2 right ai.^les-, and the mag-
nitudes of solid angles formed by n bounding planes, by the
excess of the sum of the angles of inclination of the several

planes above 2« — 4 right angles.

As to solid angles limiied by curve surfaces, such as the

angles at the vertices of cones j they will manifestly be mea-
sured by the spheric surfaces cut off by the prolongation of
their bounding surfaces, in the same manner as angles deter-

mined by planes are measured by the triangles or polygons,

they mark out upon the same, or an equal sphere. In all

cases, the maximum limit of solid angles, will be the 'plane

towards which the various planes determining such angles

approach, as they diverge further from each other about the

same summit : just as a right line is the maximum limit of

plane angles, being formed by the two bounding lines when
they make an angle of 1 80°. The maximum limit of solid

angles is measured by the surface of a hemisphere, in like

manner as the maximum limit of plane angles is measured by
the arc of a semicircle. The solid right angle (either angle,

for example, of a cube) is ^(— 4") of the maximum solid an-

gle : while the plane right angle is half the maximum plane

angle.

The analogy between plane and solid angles being thus

traced, we may proceed to exemplify this theory by a few in-

stances; assuming 1000 as the numeral measure of the maxi-
mum solid angle = 4 times 90° solid =. 360° solid.

1. The solid angles of right prisms are compared with great

facility. For, of the three angles made by the three planes

^vhich, by their meeting, constitute every such solid angle,

two are right angles ; and the third is the same as the corre-

sponding plane angle of the polygonal base; on which, there-

fore, the measure of the solid angle depends. Thus, with
respec: to the right prism with an equilateral triangular base,

each solid angle is formed by planes which respectively make
angles of 90% 90°, and 60". Consequently 90° -1-90°+ 60"—
180 =60°, is the measure of such angle, compared with 360°

the maximum angle. It is, therefore, one-sixth of the maxi-

mum angle. A right prism with a square base, has, in like

manner.
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manner, each solid anglfe measured by 90°'-f 90°4-90 —180*

= 50% which is i of the maximum angle. And thus it may be

found, that each soHd angle ofa right prism, with an equilateral

triangular base is -i max. angle = - .1000.

square base
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3, 3, 4, 3, 5 respectively. Consequently the several solid an-

gles will be determined by the subjoined proportions :

Solid Angle.

360" :
3.70°31'42'' - 180' : : 1000 : 87-73611 TetraeJron.

360° :
3.90° - 180" : : 1000 : 250- Hexaedron.

36O°:4-.109°28'l8"— 360° :: 1000 : 2I6'35185 Octaedron.
360°: 3.116°33'54"— ISO" : : 1000 : 471-39.5 Dodecaedron.
360°:5.138°ll'23"— ^lO*^ :: IGOO : 419-30169 Icosaedron.

3. The solid angles at the vertices of cones, will be deter-

mined by means of the spheric segments cut off at the bases

of those cones ; that is, if right cones, instead of having plane

bases, had bases formed of the segments of equal spheres,

whose centres were the vertices of the cones, the surfaces of

those segments would be measures of the solid angles at the

respective vertices. Now, the surfaces of spheric segment?,

are to the surface of the hemisphere, as their altitudes, to the

radius of the sphere ; and therefore the solid angles at the

vertices of right cones, will be to the maximum solid angle,

as the excess of the slant side above the axis of the cone, to

the slant side of the cone. Thus, if we wish to ascertain the

solid angles at the vertices of the equilateral and the right-

angled cones ; the axis of the former is 4-\/3, of the latter,

IV 2, the slant side of each being unity. Hence,
Angle at vertex.

1 : 1 — iv/3 : : ICOO : 133-97464, equilateral cone,

1 : 1 - 4'/2 : : 1000 : C92-89322, right-angled cone.

4. From what has been said, the mode of determining the

solid angles at the vertices of pyramids will be sufficiently ob-

vious. If the pyramids be regular ones, if n be the number
of faces meeting about the vertical angle in one, and A the

angle of inclination of each two of its plane faces -, ii n be the

number of planes meeting about the vertex of the other, and

a the angle of inclination of each two of its faces : then will

the vertical angle of the former, be to the vertical angle of the

latter pyramid, asNA — (n — -2) 180% to na — (n — ^) ISC'.

If a cube be cut by diagonal planes, into 6 equal pyramids

with square bases, their vertices all meeting at the centre of

the circumscribing sphere •, then each of the solid angles,

made by the four planes meeting at each vertex, will be ^ of

the maximum solid angle ; and each of the solid angles

at the bases of the pyramids, will be ^-V of the maximum solid

angle. Therefore, each sohd angle at the base of such pyra-

mid, is one-fourth of the solid angle at its vertex : and, if the

angle at the vertex be bisected, as described below, either of

the solid angles arising from the bisection, will be double of

either soHd angle at the buse. Hence also, and from the first

subdivision
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subdivision of this scholium, eacli solid anolc of a prism, with

equilateral triangular base, will be /la// e:ich vertical angle of

these pyramids, and double each solid angle at their bases.

The angles made by one plane with another, must be as-

certained, either by measurement or by computation, accord-

ing to circumstances. But, the general theory being thus

explained, and illustrated, the further apphcation of it is left

to the skill and ingenuity of geometers ; the following simple

example, merely, being added here.

Ex. Let the solid angle at the vertex of a square pyra-

mid be bisected.

1st. Let a plane be drawn through the vertex and any two

opposite angles of the base, that plane will bisect the solid

angle at the vertex ; forming two trilateral angles, each equal

to half the original quadrilateral angle.

2dly. Bisect either diagonal of the base, and drawa?n/ plane

to pass through the point of bisection and the vertex of the

pyramid ; such plane, if it do not coincide with the former,

will divide the quadrilateral solid angle into two equal qua-

drilateral solid angles. For this plane, produced, will bisect

the great circle diagonal of the spherical parallelogram cut off

by the base of the pyramid ; and any great circle bisecting

such diagonal is known to bisect the spherical parallelogram,

or square ; the plane, therefore, bisects the solid angle.

Cor. Hence an indefinite number of planes may be drawn,

each to bisect a given quadrilateral solid angle.

SECTION n.

Resolution of Spherical Triangles.

The different cases of spherical trigonometry, like those in

plane trigonometry, may be solved either geometrically or al-

gebraically. We shall here adopt the analytical method, as

well on account of its being more compatible with brevity,

as because of its correspondence and connexion with the sub-

stance of the preceding chapter*. The whole doctrine may
be comprehended in the subsequent problems and theorems.

• For tlie ceometriral metliotl, llie reader may consult Simsoii's or

Playfair's Euclid, or Bishop Horsley'i; Elementary Treatises on Practical

Mathematics.

PROBLEM
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PROBLEM I.

To Find Equations, from which may be deduced the Sokulon
of all the Cases of Spherical Triangles.

Let ABC be a spherical triangle; ad the tangenf, and GD
the secaat, of the arc ab; ae the tangent, and ge the se-
cant, of the arc ac ; let

thecapiial letters A, B. c,

denote the angles of the

triangle, and the small

letters a, b, c, the op-
posite sides Bc, AC, AB.

Then the first equa-

tions in art. 6 PL Trig.

applied to the two triangles Ade, GDE, give, for the former,

DE = tan^ b -\- tan^ c — tan b . tan c . cos A ; for the latter,

DE"'^ = sec^ b 4- sec'' c — sec b . sec c . cos a. Subtracting

the first of these equations from the second, and observing

that sec" b — tan" ^ =: r^ = 1, we shall have, after a little

reduction, 1 -I- -—t-^— cos A ^ = 0. Whence
cos . Cos C C )> . CJS c

the three following symmetrical equations are obtained :

cos a = cos b . cos c -f ,sin . sin c . cos a 1

cos b = cos (I . cos c + sin a . sin c . cos e >• (I.)

cos c r: cos a . cos b 4- sin a . sin b . cos c J

THEOREM VII.

In Every Spherical Triangle, the Sines of the Angles are Pro-

portional to the Sines of their Opposite Sides.

If, from the first of the equations marked i, the value

of cos A be drawn, and substituted for it in the equation

sin^ A = 1 — cos^ A, we shall have

cos' a + cos' b . cos' c—2 cos a . cos /' . cos c

sm' A = 1 Tl T .

Reducing the terms of the second side of this equation to a

common denominator, multiplying both numerator and deno-

minator by sin^ fl, and extracting the sq. root, there will result

>./( I - t;'-'^'^ " — t'f'-^ f> — P' •'•* < + 2 cos a . COS h . COS c)

sm A = sm a.^^ . -;—

:

.

Here, if the whole fraction which multiplies sin a^ be denoted

by K (see art. 8 chap, iii), we may write sin A z= K . sin a.

And, since the fractional factor, in the above equation, con-

tains terms in v/hich the sides «, b, c^ are alike atFected, we
have
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have similar equations for sin b, and sin c That is to say,

we have

sin A =: K . sin a . . . sin B = K . sin ^ . . . sin c = K . sin c.

Consequently, ^^:— = -^- = -— . . . (II.) which is the
* -^ ' sin a sin b sin c

algebraical expression of the theorem.

THEOREM VIII.

In Every Right-Anglcd Spherical Triangle, the Cosine of

the Hypothenuse, is equal lo the Product of the Cosines

of the Sides Including the right angle.

For, if A be measured by ^O^ its cosine becomes nothing,

and the first of the equations i becomes cos u = cos b . cos C.

a. E. D.

THEOREM IX.

In Every Right-Angled Spherical Triangle, the Cosine of
either Oblique Angle, is equal to the Quotient of the

Tangent of the Adjacent Side divided by che Tangent of

the Hypothenuse.

If, in the second of the equations i, the preceding value of
cos a be substituted for it, and for sin a its value tan a . cos a=
cos a . cos b . cos c ; then, recollecting that 1 — cos^ c =. sin" c,

there will result, tan a . cos c . cos b z= sin c : whence it

follows that,

tan a . cos b = tan c, or cos b

Thus also it is found that cos c =
tail a

tan b

THEOREM X.

In Any Right-Angled Spherical Triangle, the Cosine of one
of the Sides about the right angle, is equal to the Quotient
of the Cosine of the Opposite angle divided by the Sine of
the Adjacent angle.

From th. 7, we have^ = ~ ; which, when A is a
sin A sui a '

right angle, becomes simply sin b = -^. Again, from th. 9,

we have cos c = :—-. Hence, by division,
tan a 'J '

cos e tan b sin a cos a

sin B sin 6 * tan a cos b'

Now, th. 8 gives—; = cos c. Therefore ^^ = cos c: and° cos b sin B
'

,., cos B 7m like manner, -:— = cos t». a. e. d.
' sm c

THEOREM
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THEOREM XI.

In Every Right-Angled Spherical Triangle, the Tangent of
either of the Oal;que Angles, is equ;;] to the Quotient of
tl^.e Tangent of the Oj^posite Side, divided by tue Sine of
the other Side about the right angle.

T-. • . sill b tan c
Jt or, since sm B= , and cos B = ,

i>iii a tan o
. sin V, bill li tan a

we have = -.

—

- . .

cos B Mn a tan c

Whence, because (th. 8) cos a —. cos b . cos c, and since

sin a = cos a . tan a, we have
sin i sin 6 sin 6 1 tan f

cos a. tan c cos /' . co- c . tan c cus 6 'cost, tan c sine*

Y ... tan c
In like manner, tan c = —;. q. e. d.

iiin o

THEOREM XII.

In Every Right-Angled Spherical IViangle, the Cosine of the

Hypothenuse, is equal to the Quotient of the Cotangent

of one of the Oblique Angles, divided by the Tangent of

the Other Angle.

For, multiplying together the resulting equations of the

preceding theorem, we have
tan b tun c 1

tan B . tan c = -—r •
-— = —r~—

•

sin sill c COS/' . cos c

But, by th. 8, cos b . cos c ~ cos a.

Therefore tan b . tan c = , or cos a = -— . q. e. d.

THEOREM XIII.

In Every Right-Angled Spherical Triangle, the Sine of the

Difference between the Hypothenuse and Base, is equal to

the Continued Product of the Sine of the Perpendicular,

Cosine of the Base, and Tangent of Half the Angle Oppo-
site to the Perpendicular ; or equal to the Continued Pro-

duct of the Tangent of the Perpendicular, Cosine of the

Hypothenuse, and Tangent of Half the Angle Opposite to

the Perpendicular *.

• This theorem is due to M. Prony, who published it without demonstra-
tion in the Connatsiance des Temps for the year 180S, and made use of it in

the constructijii ol" t» cliart of the course of the Po.

Here,
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Here, retaining the same notation, since we have

sin a = ^T— , and cos D = ^—^\ if for the tangents there be
Mil B tail a °

substituted their vakies in sines and cosines, there will arise,

sin h

Sin c . cos a = cos b . cos c . sin a = cos b . cos c . .

sill B

Then substituting for sin a, and sin 6"
. cos ci, their values in

the known formula (equ. v chap, iii) viz,

in sin (a — c) = sin a . cos c — cos a . sin c,

1 11 • 1 1 —cos B
and recollecting that — = tan 'B,° sill R ^

it will become, sin (a — c) :=z sin h . cos c . tan -|B ;

which is the first part of the theorem : and, if in this result

we introduce, instead of cos c, its value -^—r (th. 8), it will
' '

. cos b ^ '

be transformed into sin («— c)= tan h . cos a . tan Ib ; which
is the second part of the theorem, q. e. d.

Cor. This theorem leads manifestly to an analagous one
with regard to rectilinear triangles, which, if A, b, and/; de-

note the hypothenuse, base, and perpendicular, and B, p, the

angles respectively opposite to b, p ; may be expressed thus :

h — b = p . tan ^p h — p = b . tan ^b.

These theorems may be found useful in reducing inclined

lines to the plane of the horizon.

PROBLEM II.

Given the Three Sides of a Spherical Triangle ; it is re-

quired to find Expressions for the Determination of the
Angles.

Retaining the notation of prob. I, in all its generality, we
soon deduce from the equations marked i in that problem,
the following ; viz,

cos a — ms b . rois r"\

cos A :=
sia /> . sin c

I

pos b — cci o . OS c I

SKI a . sill c
I

co« c — cos a . CDS b I

C = —
sin a . sill J

cos B zr

cos

As these equations, however, are not well suited for loga-

rithmic computation ; they must be so transformed, that their

second members will resolve into factors. In order to this,

substitute in the known equation 1 — cos A = 2 sin^ -^A,

she preceding value of cos a, and there will result
cos (b ~ c) — cos a

ma b .kiu c

But,
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But, because cos b'— cos a' = 2 sin -'(a' + b') . sin \{a.' — bO
(art. 25 ch. iii), and consequently,

/i V ^ . a + b — c . a + c — /•

COS {0 — t) — COS a=z 2 sm . sin—-—

;

we have, obviously,
- i I

i'ini(a + fi - c) . sin f fa + c - b)
Sin^ 4-A = —^, r-^ -,

sin D . Sill c

Whence, making s = « + '^ + c, there results

Sin lA = V ^—;——1; \
sin . sin c

I
'

, . / sin (f s — «) . sin (^s — r) I /ttt \

So, also, Sin ^B = V — , - .
^ -^ ) (lil-)

sin a sin c

And, sin ic = \/ : -7^ .
* sin a . sin u J

The expressions for the tangents of the half angles, might
have been deduced with equal ficility : and we should have
obtained, for example,

, / sin (is — Z)) . sin (.'7S - c) .....
tanH= V ^^7

—

—TT^^-T— ('«•)
sin ^s . sin -^(s — a) ^

Thus again, the expressions for the cosine aiid cotangent

©f half one of the angles, are
/sin ^s . sin -^(s — o)

COSiA

cot yA = \/

sia b . sin c

sin ^s . sin f(s — a)

in (js — Zi) . sin (^s — c)

The three latter flowing naturally from the former, by mean$

of the values tan = — , cot = — . (art 4 ch. iii.)
Cos s:n ^

Cor. 1 . When two of the sides, as h and c, become equal,

then the expression for sin |a becomes
, sin (^s — b) sin ^a

sm |A = -^ = ^-^.
sin o sill V

Cor. 2. When all tlie three sides are equal, or a= b = c,

.1 . , sin \a
then sm Ia =——,

sin a

Cor. 3. In this case, \£ a— h = c = QO^-, then sin \h —
^- = is^2 = sin 45" : and A = B =: c = 90°.

Cor. 4. Ua=b=c=60°: then sin iA = r^ = -i-v/S =
sm 35° 1 5 51 : and a = b = c = TCSl 42 , the same as the

angle between two contiguous planes of a tetraedron.

Cor. 5. If u= b= c were assumed = 1
20''

: then sin yA =
sin 60° -^ /3

g"l,, )2oo = i^ = 1 » and A = B r= c = 1 80° ; which shows

that no such triangle can be constructed (conformably to

th. 2); but that the three sides would, in such case, form three

continued arcs completing a great circle of the sphere.

PROBLEM
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PROBLEM III.

Given the TJiree Angles of a Spherical Triangle, to find

Expressions for the Sides.

If from the first and third of the equations marked t

(prob. 1 ), cos c be exterminated, thei-e will result,

cos A . sin c -f cos c . sin a . cos 6 = cos a . sin b.

But, it follows from th. 7, that sin c — ^'" "
'

'

—. Substitut-
' ' sin A

ing for sin c this value of it, and for -—, — , their equi-o '
sin A sill a ' ^

valents cot a, cot a, we shall have,

cot A . sin c + cos c . cos b — cot a . sin b.

^-. . , cos a . , sin 6 sin B
Now, cot a .sino = -— . sm o = cos a .

-—- zz: cos a .
-—

>

' sin a !^in a sin a

(th. 7). So that the preceding equation at length becomes,

cos A . sin c = cos a . sin b — sin a . cos c . cos b.

In like manner, we have,

cos B . sin c n: cos 6 . sin A — sin B . cos c . cos a.

Exterminating cos b from these, there results

cos A = cos a . sin b . sin c — cos b . cos C. ")

So like- 7 cos B = cos d . sin a . sin c — cos A . cos c. > (IV.)

wise 5 cos c = cos c . sin A . sin b — cos a . cos b. j
This system of equations is manifestly analogous to equa-

tion I ; and if they be reduced in the manner adopted in the

last problem, they will give
, cos if A + B + c) . cos irB+

c

-a)
sm la = */ =

: -.—~ ^•
' *

sill B . Sin c

,, . cos i;;A + B + c) . cos a(a + c— B)Sm 40 = "V/^
— : .

sin A . sin c

, , cos *(a + B + c) . cos |(A+B— c1
sm ic = -v/

=
:

— -,
'

sill A . sin B

The expression for the tangent of half a side is

, , cos 4fA+ B + C) . cos i (b + C— a)
tan i-fl. = -v/

~—
.

cos f (a + C— d) . COS i (^A+ B— CJ

The values of the cosines and cotangents are omitted, to

save room ; but are easily deduced by the student.

Cor. 1 . When two of the angles, as b and c, become equal,

then the value of cos \a becomes cos ia — -r-
'-—

.
2 sin B

Lor. 2. When a = b = c ; then cos V« = —.
' * sin A

Cor. 3. When a = b = c = 90*, then a = b = c = 90°,

sin 60"
Cor. 4. If A = b = c = 60°i then cos ^a = —— — 1.' ' sin 60

So that a — b — c -rz Q. Consequently no such triangle can

be constructed : conformably to th. 3,

Vol. III. H Cor.

(V.;
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Cor. 5. If A = B=c= 120': then cos i^ = ---irrl= /,„ -^

l-ZS = COS 54-'*44'9". Hence a = b = c — 109'^28'IS".

Sihol. If, in the preceding values of sin ^a, sin ^-/^, &c, thtf

quantities under the radical were negative in realitv, a;; they

are in appearance, it would obviously be impossible to deter-

mine the value of sin ^u, &c. But this vahie is in fact always

real. For, in general, sin {x — ^O) = ~ cos x : therefore,

sin (—^^^ 4O) = — cos t( A + B 4- c) ; a quantity which

is always positive, because, as A ^ B -|- C is necessarily com-
prised between f O and ^O. ^'^'S have \[A 4- B + c) — f O'
greater than nottiing, and le.s than jO- Further, anyone
side of a sp'ie>ical triangle being smaller than the sum of the

otiier two, we have, by the property of the polar triangle

(theorem 4), ^ O — A less than 70~b4-tO~c; whence
|(b -!- c — a) is less than ^ O > and of course its cosine is

positive.

PROBLEM IV.

Given Two Sides of a Spherical Triangle, and the Included

Angle-, to obtain Expressions for the Other Angles,

t. In the investigation of the last problem, we had
cos A . sin f r= cos a . sin h ~ cos c . sin « . cos b:

"and by a simple permutation of letters, we have

cos B . sin c = cos b . sin a — cos c . sin 6 . cos a

:

adding together these two equations, and reducing, we hare
bin (• (cos A -|- cos b) = (1 — cos c) sin (a + 6).

Now, we have from theor. 7,

sin a sin c , sin 6 sin c

sill A sine' sill B sine

Freeing these equations from their denominators, and respect-

ively adding and subtracting them, there results

sin c (sin A + sin b) =: sin c (sin a -\- sin 6),

and sin c (sin A — sin b) = sin c (sin a — sin 6).

vDividing each of these two equations by the preceding, there

will be obtained
sin A + sin B sine sina + ^in&

CDS A + Cos B 1— cusc * sill (a+b) '

sin A— sine sine sin a— sin 6

C0SA + (0SB 1 — cos c sin(u + i')

Comparing these with the equations in arts. 25, 26, 27, ch. iii,

there will at length result

1/ . \ .cos i(a—h) -»

tan Ka + b) = cot ic .
•—f - -

.

ICVS ^{a + b) I rxTT X

1/ \ .
sin i\a-b) ( ' • K^*-J

tan 4(A - b) = cot ic .—77—TT- J

Cor,
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Cor. "When a = b, the fir^t of the above equations be-

comes tan A IT tan B = cot 4c • sec a.

And in this c;:se it will be, as ra;d : sin ic : : sin a or

tin I) : sin ^c.

And, as rad : cos A or cos B : : tan a or tan b : tan Ic.

2. The preceding values of tan 4(a + b), tan |(a— b) are

very well fitted for logarithmic computation : it may, not-

withstanding, be proper to investigate a theorem which will

at once lead to one of the angles, bv means of a subsidiary

angle. In order to this, we deduce immediately from the

secoiTd equation in the investigation of prob. 3,
cat (t . sin ij

. 1
cot A zr : cot c . cos v.

stn c

Then, choosing the subsidiary angle (p so that

tan <p rr tan a . cos c,

thaS is, finding the angle
<Pf whose tangent is equal to the

product tan a . cos c, which is equivalent to dividing the

original triangle into two right-angled triangles, the preced-
ing equation will become

cot A= cot cfcot O.sinb — cos^)=—- fcos (S.slnb — sin . cos b).
^ sin ^ ^ '^

And this, since sin {b — (p)= cos <p . sin b — s'm^. cos b, becomes
cctc • ,1 \

cot A = -— . sm (0 — <p}.
sm 9 ^ "^ '

Which is a very simple and convenient expression,

PROBLEM V.

Given Two Angles of a Spherical Triangle, and the .Side

Comprehended between them ; to find Expressions for

the Other Two Sides.

1. Here, a similar analysis to that employed in the pre-

ceding problem, being pursued with respect to the equation?

IV, in prob. 3, will produce the following formulse

:

sin a + sin b sin c sin a + ?in b

COS a + cos b 1 + cos c * sin (A + b)
*

sin a — sin 6 sin c sin a — sin R '

cos a + cos b 1 + cos c * sin (a + b)
*

Whence, as in prob. 4, we obtain

tan |(a + b) = tan ^c . ^-"^J.l

tan.i(a-/.)=tanic.^i^.i
^ ^ ' 'sin i(A + b) J

* The foraiulce marked vi, and vir, converted into analogies, by making
the denominator of the second member the first term, the other two factors

the second and third terms, and the first member of the equation, the fourth

term of the proportion, as

H 2 2. If
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2. If it be wished to obtain a side at once, by means of a

subsidiary angle ; then, find <p so that -;

—

- = tan ipj then will

cot c . .

cot a = . cos (b — <P).
COS 9 \ I

/ .

PROBLEM VI.

Given Two Sides of a Spherical Triangle, and an Angle
Opposite to one of them j to find the Other Opposite

Angle.

Suppose the sides given are a, b^ and the given angle b :

then from theor. 7, we have sin A r= —,— ; or, sin a, a
sin b '

fourth proportional to sin 3, sin b, and sin a.

PROBLEM VII,

Given Two Angles of a Spherical Triangle, and a Side

Opposite to one of them ; to find the Side Opposite to

the other.

Suppose the given angles are a, and B, and b the given

side : then th. 7, gives sin a = '

r— ; or, sin a, a fourth

proportional to sin b, sin bf and sin a.

Scholium.

In problems 2 and 3, if the circumstances of the question

leave any doubt, whether the arcs or the angles sought, are

greater or less than a quadrant, or than a right angle, the

difficulty will be entirely removed by means of the table of
mutations of signs of trigonometrical quantities, in different

quadrants, marked vii in chap. 3. In the 6th and 7th pro-

blems, the question proposed will often be susceptible of two
solutions : by means of the subjoined table the student may
always tell when this will or will not be the case.

1. With the data a, b, and B, there can be only one solution

when B = i O (a right angle),

or, when B<^O....a<:'^0.,..b-> a

B<i0....a>^O....b>iO-a,
B > 1 O « < i O . . . . d < f O - «,

B>iO--'-«>iO----^<<^-
cos \(a + I) : cos 5(0 — b):: cot ^C : tan |(a + b),

sin \{a + b) : sin |(a — h) : : cot ^C : tan ^(a. — B), Sec. &c.
are called the Analogies of Napier, beiii°; invented l)\ tli t celebrated sreome-
ter. He likewise invented other rules for -ipliencal trii^'oii'imetry, known by
the name of Napier's Rules for the circular parts ; but thrse, notwithstanding
their ingenuity, are not inserted herej becaus they are tO'> artificial t« be
applied by a young computist, to every case that may occur, without con-
sideialide danger of misapprehension and error.

The
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Questionsfor Exercise in Spherical Ty^gonometry.

Ex. 1. In the right-angled spherical triangle bac, right-

angled at A, the hypothenuse a = 7S''20', and one leg c zz

76°52', are given j to find the angles b, and c, and the other

leg b.
^_

Here, by table i case 1, sin c = —-;

tail f. , cos a
COS B=: ; , . . cos = .

tana ' cos c

Or, log sin c = log sin c — log sin a -f 10.

log cos B — log tan c — log tan <z + 10.

log cos h •=. log cos a — log cos c -f- 10.

Hence, 10 + log sin c = 10 + log sin 7b"52' = 19-0S84894

log sin a — log sin 78°20' = 9-9909338

Remains, log sin c = log sin 83°56' = 9-m975656

Here c is acute, because the given leg is less than 90".

Again, 10 + log tan c = 10 + log tan 76°5'2' = 20-6320468

log tan a = log tan 78°20' = 10-6851149

Remains, log cos b = log cos 27°45' = 99469319

B is here acute, because a and c are of like affection.

Lastly, 10 + log cos a = 10 + log cos 78'20' = 19-3058189

log cos c — log cos 76°52' = 9-3564426

Remains, log cos b = log cos 27° 8' = 9-9493763

where b is less than 90°, because a and c both are so.

Ex. 2. In a right-angled spherical triangle, denoted as

above, are given a =z 78°20', B = 27'45'; to find the other

sides and angle.

Ans. b = 270 8', c = 76-52', c = S3''56'.

Ex. 3. In a spherical triangle, with A a right angle, given

b = in 34', c = 31°51'; to find the other parts.

Ans. a — 1 13'55', c = 28"5r, b = 104° 8'.

Ex. 4. Given b — 27°6', c = 76°52' ; to find the other

parts. Ans, a = 78°20', B = 27°45', c = 83*56'.

Ex. 5. Given b - 42°12', r> = 48';to find theotherparts.

Ans. a z=. 64^40'i,or its supplement,

c = 54°44', or its supplement,

c = 64°35', or its supplement.

Ex. 6. Given b = 48°, c = 64°35'-, required the other

parts > Ans. b - 4'J:'i2', c = 54^44', a = 64''40'4.

Ex.
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Ex, 7. In the quadrantal triangle ABC, given the qua-

drantal side a — 90", an adjacent angle c = 42" 1 2'; and the

opposite angle a = 64** 40'-, required the other parts of the

triangle ?

Ex. 8. In an oblique-angled spherical triangle are given

the three sides, viz, a = 56^^40', b - 83°13', c = 114"30'j

to find the angles.

Here, by the fifth case of table 2, we have

sin Ia = v/ ——;

—

'•

* siH h . sin c

Or, log sin |a = log sin (|.?— ^) -f log sin (^s— c)+ ar. comp.

log sin b -f ar. comp. log sin c : where s = a + b -i- c.

log sin (i-5 - b) = log sin 43"5S'^ = 9-8415749
log sin li-s — c) = log sin J2°4l'i- = 9-3418385

A. clog sin <^= A . c .log sin 83^13' =0-0030508
A.c . log sin c = A . c . log sin 1 14°30' = 0-0409771

Sum of the four logs ..... 19'2274413

Half sum = log sin iA = log sin 24° 1 5'i = 9-6137206

Consequently the angle A is 48''3l'.

Then, by the common analogy,

As, sin a . . . sin 56^40' ... log = 9*9219401

To, sin A . . . sin 48''3l' ... log = 9-8745679

So is, sin b . . . sin 83°13' ... log = 9-9^69492
To, sin B . . . sin 62"56' ... log = 9-9495770

And so is, sin c . . . sin 114"30' ... log = 9-9590229

To, sin c . . . sin 125°19' ... log = 9-91 16507.

So that the remaining angles are, b= 62°56', and c= 125°19

.

2dly. By way of comparison of methods, let us find the

angle A, by the analogies of Napier, according to case 5

table 3. In order to which, suppose a perpendicular demit-

ted from the angle c on the opposite side c. Then shall we

1 » j-rr r tan Ub + a). tan \(B — a)
have tan i dm. seg. of c =—^ ^ -," tan ic

This in logarithms, is

log tan ^{b 4- a) = log tan 69''56'|- = 10*4375601

log tan ilb - a) = log tan 13"16'i = 9*3727819

Their sum = iysl0.>420

Subtract log tan |c = log tan 57° 15' = 10-1916394

Rem. log cos dif. seg = log cos 22''34' = 9olS7026

Hence, the segments of the base are 79°49' anu 34 *l'.

Therefore,
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Thcefore, since co-. a = tan T9"49' X cot ^ :

To log lan adja. scg. = log tan 79' 49' == 10 7156257
A'.ld l(g tan side y — l.g tan 83"13' = 9-07.5..563

'i he su n, rejecting 10 fi-om the index } _ „ '09820
rr log cos A n log cos 48"32' >

~ ~

Tiie oti»er two aj'gles nay be found as before. The pre-

ference i^, in this case, manifestly due to the former method.

jGx. 9. la an oblique-angled spherical triangle, are given

two sides, eqnal to 1 i4'30' and 5f)'^40' respectively} and the

angle opposite the former equal to 125°20' ; to find the other

par^s. Ans. Angles 48 '30' and 62 55' ; side, 83n2'.

E.r. 10- Given, in a spherical trianglej tvro angles, equal

to 43°30' -vid 125 20/, and the side opposite the latter j to

find the other parts.

Ans. 8ide opposite first angle, 56M0'; other side, 83°12'':.

third ang'e, 6-'°54'.

Ex. 1 1. Given two sides, equal 11 4^30' and 56°40' j and

cheir included'ang'.e b^^il': to find the rest.

Ex. 12. Given tv?o ang'es, 125°'20' and 48'=30', and the side

comprehended be'weea them S:i"l'/ : to find the other parts,

l^.r. i;5. In a spherical triangle, the angles are 48°3
1
',62°56',

and 125*20'*, required the sides .-^

Ex. 14. Given two angles, 5C°12', and 58^8'-, and a side

opposite the former, G2"42' ; to find the other parts.

Ans. The third angle is either l^O^oS' or 15G°14'.

Side betw. giv. angles, either 119°4' or 152°14',

Side opp. 58''8', either 79°12'cr 100''48'.

Ex. 15. The excess of the three angles of a triangle,

measured on the earth's surface, above two right angles, is

1 second ; v/hat is its area, taking the earth's diameter at

7957-' miles.?

Ans. 76*75299, or nearly 76| square miles,

E.r. 16. Determine the solid angles of a regular pyramid

with hexagonal base, the altitude of the pyramid being to

each side of the base, as 2 to 1.

Ans. Plane angle between each two lateral faces 126°52' 1
1''^.

between the base and each face 66''35'l l"|.

Solid angle at the vertex 89* 17 111 l fhe max. angle

Each ditto at the base 218'1905 i being 1000.

CHAPTER
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CHAPTER V.

UN GEODESIC OPERATIONS, AND THE FIGURE OF THE
EARTH.

SECTION I.

General Account of this kind of Survej/ing,

Art. 1. In the treatise on Land Surveying in the second.

Volume of this Course of Mathematics, the directions were
restricted to the necessary operations f)r surveying fields,

farms, lordships, or at most countief~. ; these being the only-

operations in which the generality of persons, who practise

this kind of measurement, are likely to be eng iged : but there

are especial occasions when it is requisite to apply the prin-

ciples of plane and spherical geCmetry, and the practices of

surveying, to much more extensive portions of the earth's

surface ; and when of course much care and judgment are

called into exercise, both v.'ith regard to the direction of the

practical operations, and the management of the computations.

The extensive processes which we are nov/ about to consider,

and which are characterised by the terms Geodesic Operations

and Trigonometrical Surveijing, are usually undertaken for

the accomplishment of one of these three objects. 1. The
finding the ditFerence of longitude, between two moderately
distant and noted meridians ; as the meridians of the observa-

tories at Greenwich and Oxford, or of those at Greenwich and
Paris. 2. The nccurate determination of the geographical

positions of the principal places, whether en the coast or in-

land, in an island or kingdom ; v/ith a view to give greater

accur cy to maps, and to accommodate the navigator wifh the

actual position, as to latitude and longitude, of the principal

promontories, havens, and pons. These have, till lately, been
desiderata, even in this country: the position of some import-
ant points, as the Lizard, no- beif'g known within seven mi-
nutes of a degree ; and, until the publication of the Board of
Ord;r.mce maps, ihe best county mips beir.g so erroneous, as

in some cases to exhibit blunders nj three miles in distances

of less than t'Wenty,

3. The
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• 3. The measurement of a degree in various situations ; and
thence the determination of the figure and magnitude of the

earth.

When objects so important as these are to be attained, it is

manifest that, in order to ensure the desirable degree of cor-

rectness in the results, the instruments employed, the opera-

tions performed, and the computations required, must each

have the greatest possible degree of accuracy. Of these, the

first depend on the artist ; the second on the surveyor, or

engineer, who conducts them ; and the latter on the theorist

and calculator : they are these last which will chiefly engage
our attention in the present chapter.

2. In the determination of distances of many miles, whether
for the survey of a kingdom, or for the measurement of a de-

gree, the whole line intervening between two extreme points

is not absolutely measured; for this, on account of the in-

equalities of the earth's surface, would be always very difilcult,

and often impossible. But, a line of a few miles in length i$

very carefully measured on some plain, heath, or marsh,which
is so nearly level as to facilitate the measurement of an actually

horizontal line ; and this line being assumed as the base of the

operations, a variety of hills and elevated spots are selected,

at which signals can be placed, suitably distant and visible one
from another : the straight lines joining these points consti-

tute a double series of triangles, of which the assumed base

forms the first side ; the angles of these, that is, the angles

made at each station or signal staff, by two other signal staffs,

are carefully measured by a theodolite, which is carried suc-

cessively from one station to another. In such a series of tri-

angles, care being always taken that one side is common to two
ofthem, all the angles are known from the observations at the

several stations ; and a side of one ofthem being given , namely,

that of the base measured, the sides of all the rest, as well as

the distance from the first angle of the first triangle, to any
part of the last triangle, may be found by the rules of trigo-

nometry. And so again, the bearing of any one of the sides,

with respect to the meridian, being determined by observa-

tion, the bearings of any of the rest, with respect to the same

meridian, will be known by computation. In these opera-

tions, it is always advisable, when circumstances will admit

of it, to measure another base (called a base of verification)

at or near the ulterior extremity of the series : for the length

of this base, computed as one of the sides of the chain of tri-

angles, compared with its length determined by actual adjuea-

sunment, will be a test of the accuracy of all the operations

made in the series between the two bases.

3. Now



GEODESIC OPERATIONS. 113

3. Now, in every series of triangles, where

each angle is to be ascertained with the same iu-

striimeipt, they should, as nearly as circumstances

will permit, be equilateral. For, if it were pos-

sible to choose the stations in such manner, that

tdch angle should be exactly 60 degrees ; then,

the half number of triangles in the series, multi-

plied into the length of one side of either trian-

gle, would, as in the annexed figure, give at once

the total distance; and then also, not only the

sides of the scale or ladder, constituted by this se-

ries of triangles, would be perfectly parallel, but

the diagonal steps, marJdng the progress from,

one e:Ntremity to th*- other^ woukl be alteina'-ely

parallel throughout the whole length. Here too,

the first side might be found by a base crossing it perpendi-

cularly of about" half its length, as at H ; and the last side veri-

fied by another such base, R.- at the opposite extremity. If the

respective sides of the series of triangles were 12 or 18 milesj

these bases might advantageously be between 6 and 7, or be-

tween 9 and 10 miles respectively ; according to circumstances.

It may also be remarked, (and the reason of it v/ill be seen in

the next section) that whenever only two angles of a triangle

can be actually observed, each of then- should be as nearly

as possible 45°, or the sum of them about 90" ; for the less

the third or computed angle differs from 90", the less proba™

biUty there will be of any considerable error. See prob. I

sect. 2, of this chapter.

4. The student may obtain a general notion of the methodg
employed in measuring an arc of the meridian, from the fol-

lowing brief sketch and introductory illustrations.

The earth, it is well known, is nearly spherical. It may be

cither an ellipsoid of revolution, that i?5 a body formed by
the rotation of an ellipse, the ratio of whose axes is learly

that of equality, on one of those axes j or it may appi-oach

nearly to the form of such an ellipsoid or spheroid, wl\ile its

deviations from that form, though small relatively, niz-j still

be sufficiently great in themselves, to prevent its being called

a spheroid with much more propriety than it is called a sphere.

One of the methods made use of to determine this point, is

by means of extensive Geodesic operations.

The earth, however, be its exact form what it may, is a.

planet, which not only revolves in an orbit, but turns upon
an axis. ISow, if we conceive a plane to pass through the

axis of rotation of the earth, and through the zen ih of '.uiy

place on its surface, this plane, if prolonged to the limits of

Vol. III. I the
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the apparent celestial sphere, would there trace the circum-

ference of a great circle, which would be the meridian of that

place. All the points of the eaa-th's surface, which have their

zenith in that circumference, will be under the same celestial

meridian, and will form the corresponding terrestrial meri-

dian. If the earth be an irregular spheroid, this meridian will

be a curve of double curvature ; but if the earth be a solid of
revolution, the terrestrial meridian will be a plane curve.

5. If the earth were a sphere, then every point upon a

terrestrial meridian would be at an equal distance from the

centre, and of consequence every degree upon that meridian

would be of equal length. But if the earth be an ellipsoid

of revolution slightly flattened at its poles, and protuberant

at the equator ; then, as will be shown soon, the degrees of
the terrestrial meridian, in receding from the equator towards

the poles, will be increased in the duplicate ratio of the right

sine of the latitude ; and the ratio of the earth's axes, as well

as their actual magnitude, may be ascertained by comparing
the lengths of a degree on the meridian in different latltudeso

HeYice appears the great importance of measuring a degree.

6. Now, instead of actually tracing a meridian on the sur-

face of the earth,—-a m.easure which is prevented by the in-

terposition of mountains, woods, rivers, and seas,—a con-

struction is employed which furnishes the same result. It

consists in this.

Let ABCDEF &c, be a series of triangles, carried on, as

nearly as may be, in the direction of the meridian, according

to the observations in art. 3. These triangles are really spherical

or spheroidal triangles ; but as their curvature is extremely

small, they are treated the same as rectilinear triangles, either

by reducing them to the chords of the respective terrestrial

arcs AC, AB, BC, &c, or by deducting a third of the excess,

of the sum of the three angles of each triangle above two

right angles, from each angle of that triangle, and working

with the remainders, and the three sides, as the dimensions

of a plane triangle ; the proper reductions to the centre of

the station, to the horizon, and to the level of tlie sea, having

been previously made. These computations being made
throughout
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throughout the series, the sides of the successive triangles are

contemplated as arcs of the terrestrial spheroid. Suppose
that we know, by observation, and the computations which
will be explained in this chapter, the azimuthy or the incli-

nation of the side AC to the first portion am of the measured
meridian, and that we find, by trigonometry, the point M
where that curve will cut the side bc. The points a, b, c,

being in the same horizontal plane, the line am will also

be in that plane : but, because of the curvature of the

earth, the prolongation mm', of that line, will be found
above the plane of the second horizontal triangle ecd : if,

therefore, without changing the angle cmm', the line mm'
be brought down to coincide with the plane of this second
triangle, by being turned about bc as an axis, the point m'
will describe an arc of a circle, which will be so very small,

that ifc may be regarded as a right line perpendicular to the
plane bcd : whence it follows, that the operation is reduced
to bending down the side mm' in the plane of the meridian,

and calculating the distance amm', to find the position of the
point m'. By bending down thus in imagination, one after

another, the parts of the meridian on the corresponding ho-
rizontal triangles, we may obtain, by the aid of the computa-
tion, the direction and the length of such meridian, from one
extremity of the series of triangles, to the other.

A line traced in the manner we have now been describing,

or deduced from trigonometrical measures, by the means we
have indicated^ is called a geodetic or geodesic line : it has the

property of being the shortest which can be drawn between
its two extremities on the surface of the earth ; and it is there-

fore the proper itinerary measure of the distance between
those two points. Speaking rigorously, this curve differs a
little from the terrestrial meridian, when the earth is not a

solid of revolution : yet, in the real state of things, the dif-

ference between the two curves is so extremely minute, that

it may safely bc disregarded.

7. If now v/e conceive a circle perpendicular to the celes-

tial meridian, and passing through the vertical of the place

of the observer, it will represent the prime vertical of that

place. The series of all the points of the earth's surface which
have their zenith in the circumference of this circle, will form,

the perpendicular to the meridian, which may be traced in

like manner as the meridian itself.

In the sphere the perpendiculars to the meridian are great

circles which all intersect mutually, on the equator, in two
points diametrically opposite : but in the ellipsoid of revolu-

I 2 tion.
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t4on, and a fortidri in the irregular spheroid, these conairring

perpendiculars are curves of double curvature. Whatever be
the nature of the terrestrial spheroid, the parallels to the

equator are curves of which all the points are at the same
latitude : on an ellipsoid of revolution, these curves are plane

and circular.

S. The situation of a place is determined, when we know
either the individual perpendicular to the meridian, or the

individual parallel to the equator, on which it is found, and
its position on such perpendicular, or on such parallel.

Therefore, when all the triangles, vrhich constitute such a

series as we have spoken of, have been computed, according

to the principles just sketched, the respective positions of

their angular points, either by means of their longitudes and
latitudes, or of their distances from the first meridian, and
from the perpendicular to it. The following is the method
of computing these distances.

Suppose that the triangles ABC, BCD, &c, (see the fig. to

art. 6) make part of a chain of triangles, of which the sides

are arcs of great circles of a sphere, who^^e radius is the di-

stance from the level or surface of the sea to the centre of the

earth ; and that we know by observation the angle c AX, which

measures the azimuth of the side ac, or its inclination to the

meridian AX. Then, having found the excess t, of the three

angles of the triangle acc (cf being perpendicular to the me-
ridian) above two right angles, by reason of a theorem which
will be demonstrated in prob. 8 of this chapter, subtract a

third of this excess from each angle of the triangle, and thus

by means of the following proportions find ac, and cc.

sin (yO° — |e) : cos (cAC— |e) : : ac : Ac;

sin (90* — iE) : sin (cAC — 4e) : : ac : cc.

The azimuth of ab is known immediately, because bax =
cab — cax ; and if the spherical excess proper to the triangle

abm' be computed, we shall have

AMB = 180° — m'aB — abm' + E.

To determine the sides am', bm', a third of e must be de-

ducted from each of the angles of the triangle abm'; and
then these proportions will obtain : viz,

sin ( 1 80° — m'ab — abm' -{- 4e) : sin (abm'— 4e) : : ab : am',
sin (180'' — m'aS — abm' -f- |e) : sin (m'ab — ^e) : : ab : bm'.

In each of the right-angled triangles a^b, m'^/d, are known
two angles and the hypothenuse, which is all that is neces-

sary to determine the sides kby Ob, and m'^, (It). Therefore
the distances of the points B, D, from the meridian and from
tlie perpendicular, are known.

9. Pro-
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5. Proceeding in the same manner with the triangle ACN,

or m'dn, to obtain an and dn, the prolongation of CD ; and

then with the triangle dnf to find the side nf and the angles

DNF, dfn, it will be easy to calculate the rectangular co-

ordinates of the point f.

The distance/p and the angles den, nf/J being thus known,
we shall have (th. 6 cor. 3 Geom.)

/fp = 1 80° — efd — dfn — Nl/.

So that, in the right-angled triangley"FP, two angles and one

side are known ; and therefore the appropriate spherical ex-

cess may be computed, and thence the angle FP/'and the sides

y'p, FP. Resolving next the right-angled triangle cep, we shall

in like manner obtain the position of the point E, with respect

to the meridian ax, and to its perpendicular Av, that is to say,

thedistances Ef,and Ac= Av — ep. And thus may the computist

proceed through the whole of the series. It is requisite how-
ever, previous to these calculations, to draw, by any suitable

scale, the chain of triangles observed, in order to see whether
any of the subsidiary triangles acn, nfp, &c, formed to faci-

litate the computation of the distances from the meridian, and
from the perpendicular to it, are too obtuse or too acute.

Such, in few words, is the method to be followed, when we
have principally in view the finding the length of the portion

of the meridian comprised between any two points, as A and

X. It is obvious that, in the course ofthe computations, the

azimuths of a great number of the sides of triangles in the

series is determined ; it will be easy therefore to check and
verify the work in its process, by comparing the azimuths

found by observation, with those resulting from the calcu-

lations. The amplitude of the whole arc of the meridian

measured, is found by ascertaining the latitude at each of its

extremities ; that is, commonly by finding the differences of

the zenith distances of some known fixed star, at both those

extremities.

10. Some mathematicians, employed in this kind of opera-

tions, have adopted different means from the above. They
draw through the summits of all the triangles, parallels to the

meridian and to its perpendicular ; by these means, the sides

of the triangles become the hypothenuses of right-angled tri-

angles, which they compute in order, proceeding from some
known azimuth, and without regarding the spherical excess,

considering all the triangles of the chain as described on a

plane surface. This method, however, is manifestly defective

in point of accuracy.

Others have computed the sides and angles of all the tri-

angles, by the rules of spherical trigonometry. Others, again,

reduce
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reduce the observed angles to angles of the chords of the re-

spective arches ; and calculate by plane trigonometry, fronii

such reduced angles and their chords. Either of these two
methods is equally correct as that by means of the spherical

excess : so that the principal reason for preferring one of

these to the other, must be derived from its relative facility.

As to the methods in which the several triangles are contem-

plated as spheroidal, they are abstruse and difficult, and may,

happily, be safely disregarded : for M. Legendre has demon-
strated, in Mhnoircs de la Classe des Sciences Physiques et

Mathtmatiques de rijistilut, 1806, pa. 130, that the differ-

ence between spherical and spheroidal angles, is less than one

sixtieth of a second, in the greatest of the ti migles which

occurred in the late ineasurement of an arc of a meridian,

between the parallels of Dunkirk and Barcelona.

1 1. Trigonometrical surveys for the purpose of measuring

a degree of a meridian in different latitudes, and thence in-

ferring the figure of the earth, have been undertaken by

different philosophers, under the patronage of different go-

vernments. As by M. Maupertius, Clairaut, &c, in Lapland,

1736; by M. Bouguer and Condamine, at the equator, 1736

—

1743; byCassini, in lat. 45", 1739—40; by Boscovich and

Lemaire, lat. 43°, 1752; by Beccaria, lat. 44°44.', lT68 ; by

Mason and Dixon in America, 1764—8 ; by Major Lambton,

in the East Indies, 1 803 ; by Mechain, Delambre, &c, France,

Sec, 1790—1805; by Swanberg, Ofverbom, &c, in Lapland,

1802 ; and by General Roy, Colonel Williams, Mr. Dalby,

and Colonel Mudge, in England, from 1784 to the present

time. The three last mentioned of these surveys are doubtless

the most accurate and important.

The trigonometrical survey in England was first com-

menced, in conjunction with similar operations in France, in

order to determine the difference of longitude betvv'een the

meridians of the Greenwich and Paris observatories : for this

purpose, three of the French Academicians, MM. Cassini,

Mechain, and Legendre, met General Roy and Dr. (now Sir

Charles) Blagdcn, at Dover, to adjust their plans of opera-

tion. In the course of the survey, however, the English

philosophers, selected from the Royal Artillery officers, ex-

panded their views, and pursued their operations, under the

patronage, and at the expence of the Honourable Board of

Ordnance, in order to perfect the geography of England, and

to determine the lengths of a? many degrees on tlic meridian

as fell within the rompaos ot tl e!r labours.

12. It is uot o- .. province to enter into the history of these

surveys : but it may be interesting and instructing to speak a

little
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little of the instruments empleyed, and of the extreme accu-

racy of some of the results obtained by them.
These instruments are, besides the signals, those for mea-

suring distances, and those for measuring angles. The French
philosophers used for the former purpose, in their measure-

ment to determine the length of the metre, rulers ofplatina

and of copper, fonPiing metallic thermometers. The Swedish
mathematicians, Swanberg and Ofverbom, employed iron

bars, covered towards each extremity with plates of silver.

General Roy commenced his measurement of the base at

Hounslow-Heath with deal rods, each of 20 feet in length.

Though they, however, were made of the best seasoned tim-

ber, were perfectly straight, and were secured from bending
in the most effectual manner; yet the changes in their lengths,

occasioned by the variable moisture and dryness of the air,

were so great, as to take away all confidence in the results

deduced from them. Afterwards, in consequence of having

found by experiments, that a solid bar of glass is more dilat-

able than a tube of the same matter, glass tubes were substi-

tuted for the deal rods. They were each 20 feet long, inclosed

in wooden frames, so as to allow only of expansion or con-

traction in length, from heat or cold, according to a lawr

ascertained by experiments. The base measured with these

was found to be 27404-08 feet, or about 5' 19 miles. Several

years afterwards the same base was remeasured by Colonel

Mudge, with a steel-chain of 100 feet long, constructed by
Ramsden, and jointed somewhat like a watch-chain. This
chain was always stretched to the same tension, supported on
troughs laid horizontally, and allowances were made for

changes in its length by reason of variations oftemperature, at

the rate of '0075 of an inch for each degree of heat from 62'*

ofFahrenheit: the result of the measurement bythis chain was
found not to differ more than 2| inches, from General Roy's

determination by means of the glass tubes : a minute differ-

ence in a distance of moi-e than 5 miles ; which, considering

that the measurements were effected by different persons, and

with different instruments, is a remarkable confirmation of

the accuracy of both operations. And further, as steel chains

can be used with more facility and convenience than glass

rods, this remeasurement determines the question ofthe com-

parative fitness of these two kinds of instruments.

1 3. For the determination of angles, the French and Swe-
dish philosophers employed repeating circles of Borda's con-

struction: instruments which are extremely portable, and with

which, though they are not above 14 inches in diameter, the

observers can take angles to within l" or 2" of the truth.

But
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But this kind of instrument, however great its injjenuity ia

theory, has the accuracy (/fits observations necessarily li iiited

by the imperfections of the small telescope which must be
attached to it. General Roy and Colonel Mudge made use of
a very excellent theod-Utc constructed bv Kauisden, which,
havmg both an .Ititude and an azimuth circle, combines the
powers of a theodolite, a quadrant, and a transit instrument,
and is capable of measuring horizontal angles to fractions of
a second. This instrument, besides, has a telescope of a much
higher magnifying po'ver than had ever before been applied

to observations purely terrestrial ; and this is one of the supe-

rioritie.- in its construction, to which is to be ascribed the ex-
treme accuracy in the results of this •rigonometrical survey.

Auotber circumstance whicn has augmented the accuracy

of the English measures, arises from the mode of fixing and
using this theodolite. In the method pursued by the Con-
tinental mathematicians, a reduction is necessary to the plan?

of the horizon, and another to bring tiie observed angles to

the true angles at the centres of d\Q signals : these reductions,

of course, require formulae of computation, the actual em-
ployment of which viay lead to error. But, in the trigono-

metrical survey of England, great care has always been taken
to place the centre of the theodolite exactly in the vertical

line, previously or subsequently occupied by the centre of the

signal : the theodolite is also placed in a pijrfectly horizontal

position. Indeed, as has been observed by a conipetent judge,
** In no other survey has the work in the field been conducted
so much with a view to save that in Lhe closet, and at the

same time to avoid all those causes of error, hqwever minute,

that are not essentially involved in the nature of the problem.

The French mathematicians trust to the correction of those

errors ; the English endeavour to ait fhe i}i(>^'emire\y; and it

can hardly be doubted that the latter, though perhaps the

slower and more expensive, is by far the safest proceeding."

14. In proof of the great correctness of the English sur-

vey, we shall state a very few particulars, besides what is

already mentioned in art. 12.

General Roy, who first measured the base on Hounslow-
Heath, measured another on the flat ground of Romney-
Marsh in Kent, near the southern extremity of the first series

of triangles, and at the distance of more than 60 miles from
the first base. The length of this base of verification, as

actually measured, compared with that resulting from the

computation through the whole series of triangles, ditfered

only by 28 inches.

Colonel Mudge measured another base of verification on
Salisburv'
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Salisbury-Plain. Its length was 36574-4 feet, or more than

7 miies ; the measurement did not differ more than one inch

from the computation carried through the series of triangles

from Hounslow-lleath to Salisbury-Plain. A most remark-

able proof of the accuracy with which all the angles, as well

as rhe two bases, were measured !

The distance between Beachy-Head in Sussex, and Dun-
nose in the Isle of Wight, as deduced from a mean of four

series of triangles, is 339397 feet, or more than G4i miles.

The extremes of the four determinations do not differ more
than 7 feet, which is less than If inches in a mile. Instances

of this kind frequently occur in the English survey*. But
we have not room to specify more. V/e must now proceed

to discuss the most important problems connected with this

subject ; and refer those who are desirous to consider it more
minutely, to Colonel Mudge"s " Account of the Trigonome"
trical Survey," Mechain and Delambre, " Base du Systeme
Mutrique Decimal;" Swanberg, *' Exposition des Operations

faites en Lapponie;" and Puissant's works entitled " Geo-
desic" and " Traite de Topographie, d'Arpentage, &c."

SECTION IL

Problems connected with the detail ofOperations in Extensive
T) 'igonometrical Surveys.

PROBLEM I.

It is required to determine the Most Advantageous
Conditions of Triangles.

1. In any rectilinear triangle ABc, it is, from the propor-
tionality of sides to the sines of their opposite angles, ab :

BC : : sin c : sin A, and consequently ab . sin c
A = EC . sin c. Let ab be the base, which
is supposed to be measured without percep-
tible error, and which therefore is assumed
as constant; then finding the extremely

• Puissant, in his " Geodesic," after quoting some of them, says, " Nean-
moins, jusqu';\ present, rienn'egale en exactitude les operations geodesiques
qui out se- VI lie fontiement a noire systt'me metrique." He however "Mves
no instances. We have no wish to depreciate the labours of the Frencli
measurers i but we cannot yield them the preference on mere assertion.

small
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small variation or fluxion of the equation on this hypothesis,

it is AB . cos A . A = sin c . bc + bc . cos c . c. Here, since

we are ignorant of the magnitude of the errors or variations

expressed by a and c, suppose them to be equal (a probable
supposition, as they are both taken by the same instrument),
and each denoted by v : then will

AB COS A — BC COS C
BC — VX : . ;

sm c
'

or, substituting -r—- for its equal -— , the equation will be-

, x:os A cos c.
come EC = z) X (EC .

~ bc .
-—)

:

sin A sin c

or, finally, bc = 'y . bc (cot a - cot c).

This equation (in the use of which it must be recollected

that V taken in seconds should be divided by r", that is, by
the length of the radius expressed in seconds) gives the error

BC in the estimation of bc occasioned by the errors in the

angles a and c. Hence, that these errors, supposing them
to be equal, may have no influence on the determination of

EC, we must have a = c, for in that case the second member
of the equation will vanish.

2. But, as the two errors, denoted by a, and c, which we
have supposed to be of the same kind, or in the same direc-

tion, may be committed in diff^erent directions, when the

equation will be BC = ± t^ . bc (cot a + cot c) ; we must
enquire what magnitude the angles A and c ought to have,

so that the sum of their cotangents shall have the least value

possible ; for in this state it is manifest that BC will have its

least value. But, by the formulx in chap. 3, we have
sin (a + c) sin (a + c)

cot A + cot C = -: ZZ
;:

j ; =
'

sin A . sin c A cos (aw c) — 5COS (a + c)

2 sin B

cos {kvi c) + cos B

Consequently, bc = ± z? . BC . : -^^ .
^ ^ cos (Ac/3 ^) + '^OS S

And hence, whatever bc the magnitude of the angle B, the

error in the value of Be will be the least when cos (a ^ c) is

the greatest possible, which Is, when a = c.

We may therefore infer, for a general rule, that the most

advmiiagcous st.aie of a triangle, xchen we "would determine

Qnc side only, is when the base is equal to the side sought.

3. Since, by this rule, the base should be equal to the side

sought, it is evident that when we would determine two sideSy

the most advantageous condition of a triangle is that it be

equilateral.

4. It



GEODESIC OPERATIONS. 123

4. It rarely happens, however, that a base can be commo-
diously measured which is as long as the sides sought. Sup-
posing, therefore, that the length of the base is limited, but

that its direction at least may be chosen at pleasure, we proceed

to enquire what that direction should be, in the case where
one only of the other two sides of the triangles is to be de-

termined.

Let it be imagined, as before, that AB is the base of the

triangle ABC, and eg the side required. It is proposed to find

the least value of cot a q= cot c, when we cannot have A = c.

Now, in the case where the negative sign obtains, we have
AB — ec cos B KC — AB . COS B AB^ — BC"

COt A - cot C = : :
= : .

BC , Sill B AB . Sin 2 AB • BC . Sin S

This equation ag^ In manifestly indicates the equality ofab and
BC, in circumstances where it is possible : but if AB and bc
are coastant, it is evident, from the form of the denominator
of the last fraction, that the fraction itself will be the least, or
cot A — cot c the least, when sin b is a maximum, that is,

when B = 90°-

5. When the positive sign obtains, we have cot a + cot c =
, a/CbC^ — All- sin« AJ

, ,, EC' ,.
cot A + ^^ : =: cot A + \/{——- 1).AB Mil A ^AB'2 Sin2 A ^

Here, the least value of the expression under the radical sign,

is obviously when a = 90*. And in that case the first term,
cot A, would disappear. Therefore the least value of cot a -f-

cot c, obtains when A= 90° ; conformably to the rule given
by M. Bouguer fFig. de la Terre, pa, 88). But we have
already seen that in the case of cot a ^ cot c, we must have
B = 90. Whence we conclude, since the conditions A = 90°,

B = 90*, cannot obtain simultaneously, that a medium result

would give a rr b.

If we apply to the side Ac the same reasoning as to bc,
similar results will be obtained : therefore in general, wJien
the base cannot be equal to ojie or to both the sides reguired,
the most advantageous condition of the triangle is, that the

base he the longest possible, and that the two angles at the
base be equal. These equal angles, however, should never,
if possible, be less than 23 degrees.

problem II.

To deduce, from Angles measured Out of one of the stations,

but Near it, the True Angles at the station.

When the centre of the Instrument cannot be placed in the
vertical line occupied by the axis of a signal, the angles ob-
s^ervedmust undergo a reduction, according to circumstances.

1. Let
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1. Let c be the centre of the station,

p the place of the centre of the instru-

mei.t, or tbe summit ofthe observed an-

gle apb: it is required to find c, the

measure of acb, supposing there to be

known apb 3z p, bpc = /?, CP = cl,

BC = L, AC — R.

Since the exterior angle of a triangle is equal to the sum
of the two interior opposite angles (th. 16 Geom.), we have,

with respect to the triangle iap, aib = p + iap ; and with
regard to the triangle Bic, aib =: c + cbp. Making these

two values of aib tqual, and transposing iap, there results

c rr p -j- IAP — cbp.

But the triangles cap, cbp, give
CP . d . s'ln (v +p)

sm CAP zz sin iap = — sm apc = ^— ;
AC K '

CP . d . sin psm cbp = — .sin pre = -.
Be L

And, as the angles cap, cbp, are, by the hypothesis of the;

problem, always very small, their sines may be substituted

for their arcs or measures : therefore
d . sin (p + /') d . sin p

C — P =: — • .

Or, to have the reduction in seconds,
d .sin (p + p) sin p.

bill l" ^ R 1,
•''

The use of this formula cannot in any case be embarrassing,

provided the signs of sin /?, and sin (p + p) be attended to.

Thus, the first term of the correction will be positive, if the

angle (p + p) is comprised between and 180°; and it will

become negative, if that angle surpass 180°. The contrary

will obtain in the same circumstances wath regard to the se-

cond term, which answers to the angle of direction p. The
letter r denotes the distance of the object A to the right, l

the distance of the object b situated to the left, and p the

angle at the place of observation, between the centre of the

station and the object to the left.

2. An approximate reduction to the centre may indeed be

obtained by a single term ; but it is not quite so correct as

the form above. For, by reducing the two fractions in the

second member of the last equation but one to a common
denominator, the correction becomes

dh , sin (p + p) — dR . sin p
C — P =

sin A
But the triangle abc gives l = -^^—^ = -

.

,
- ^ -\-« • 8in B sin (a + cj

Arid
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And because p is always very nearly equal to c, the sine of

A 4- P ^vi^^ differ extremely little from sin (a + «-')? and may

therefore be substituted for it, maklnar l = -

—

- '

"^

.° siu (a + \-)

Hence we manifestly have

d . sin A . sin (p + p)-d. sin ^ . sin ( a + r)

C — p — — ;

K . Mil A

Which, by taking the expanded expressions fcr sin (p -\- p)^

and sin (a -f p), and reducing to seconds, gives

d sm p . ^i: ( A— I))

C — P — -—
-7 • .

sin I

'

i( . i.i. A

3. When either of the distances R, L, becomes Jnfinite,

with respect to d, the corresponding term in the expression

art. 1 of this problem, vanishes, and v\'e have accordingly
d . sin p d, . sin iv + n)

c — p zr ——, or c - p n -'-^.
L . SIU 1 ' i< . Sin 1'

The fifst of these will apply when the object a is a heavenly
body, the second when b is one. When both a and B ai'e

such, then c — P = 0.

But Vvithout supposing either A or b infinite, we may have
c — p = 0, or c = p in innumerable instances: that is, in

all cases in which the centre p of the instrument is placed in

the circumference of the circle that passes through the three
poii'jts A, B, c ; or when the angle bpc is equal to the angle
BAG, or to BAG + 180°. Whence, though c should be inac-

cessible, the angle acb may commonly be obtained by obser-
vation, without any computation. It may further be ob-
served, that when p falls in the circumference of the circle

passing through the three points A, B, c, the angles a, B, c,

may be determined solely by measuring the angles apb and
BPC. For, the opposite angles abc, apc, of the quadrangle
inscribed in a circle, are (theor. 54 Geom.) == 180'^. Conse-
quently, ABC = 1S0°— apc, and bag — 180° — (abc + acb)
= 180°- (ABC +APB).

4. If one of the objects, viewed from a further station, be
a vane or staff in the centre of a steeple, it will frequently
happen that such object, when the observer coines near it, is

both invisible and inaccessible. Still there are various me-
thods of finding the exact angle at c. Suppose, for example,
the signal-staff be in the centre of a

circular tower, and that the angle apb
was taken at p near its base. Let the
tangents pt, pt', be marked; and on
them two equal and arbitrary distances

pwi, pm', be measured. Bisect mm' at

the point n j and, placing there a signal-

staff.
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Staff, measure the angle nPB, which, (since vn prolonged ob-
Tiously passes through c the centre,) will be the angle p of
the preceding investigation. Also, the distance p^- added to

the radius cs of the tower, will give vc = d in the former
investigation.

If the circumference of the tower cannot be measured, and
the radius thence inferred, proceed thus : Measure the angles

BPT, bpt', then will bpc = 4(bpt + bpt') =p •, and cpt =
BPT — BPC : Measure pt, then Pc = pt . sec cpt =d. With
the values oip and d, thus obtained, proceed as before.

5. If the base of the tower be polygonal and regular, as

most commonly happens ; assume p in the point of intersec-

tion oftwo of the sides prolonged, and bpc' zz. ^(bpt + bpt')

as before, pt = the distance from p to

the middle of one of the sides whose
prolongation passes through p ; and
hence PC is found, as above. If the

figure be a regular hexagon, then the

triangle v}nni' is equilateral, and PC =

PROBLEM III.

To Reduce angles measured in a Plane Inclined to th6

horizon, to the Corresponding Angles in the Horizontal

Plane.

Let ECA be an angle measured in a plane inclined to the

horizon, and let b'ca' be the corresponding angle in the ho-

rizontal plane. Let d and d' be the zenith distances, or the

complements of the angles of elevation aca', bcb'. Then
from z the zenith of the observer, :

or of the angle C, draw the arcs zUy ^;-'"-v---.. B
zi, of vertical circles, measurmg the

\
"'./••.^/'^: X.A.

zenith distances rf, d'y and draw the '; JX: ^.,-4'f^
arc ab of another great circle to \ y'\,.^^^^^^^^^'^\^ \

measure the angle c. It follows ^ .^^^^^^^^^^^^''^ ^s! a
from this construction, that the an-

gle 2, of the spherical triangle zah,

is equal to the horizontal angle a'c'b ; and that, to find it,

the three sides %a =. d, zb zz d'y ab zz c, are given. Call the

sum of these s ; then the resulting formulae of prob. 2 ch. iv,

applied to the present instance, becomes

sm iz n sm |c — V —-
. . jr- -,

If
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, If h and U represent the angles of altitude AGa', bcb', the

preceding expression will become

, sin i (c + ft - V) . sin i(c + A'— ft)

Sin J c = V——
r V —

.

COS h . cos ft

Or, in logarithms,

log sin 4-c zr i(CO + log sin 4(c -\- h — h') + log sin

^"(c + A' — h) — log cos h — log cos h'.

>r» -.,.7 7, , . . sin ^ACB ,

Cor. 1. lUi =z h, then is sin 4^0 = — ; and
' * cos h '

log sin 4a'cb' =: 10 + log sin |acb — log cos h.

Cor. 2. If the angles h and /i be very small, and nearly-

equal ; then, since the cosines of small angles vary ex-

tremely slowly, we may, without sensible error, take

log sin ^a'cb' = 10 + log sin ^acb — log cos i{/i + h').

Cor. 3. In this case the correction .r n: a'cb' — acb, may
be found by the expression

X - sin 1" (tan ic(iO -^^'y - cot ic(^V).

And in this formula, as well as the first given for sin ^Cf d
and d' may be either one or both greater or less than a qua-

drant ; that is, the equations will obtain whether aca' and
Bcb' be each an elevation or a depression.

Scholium. By means of this problem, if the altitude of a

hill be found barometrically, according to the method de-

scribed in the 2d volume, or geometrically, according to some
of those described in heights and distances, or that given in

the following problem ; then, finding the angles formed at

the place of observation, by any objects in the country below,

and their respective angles of depression, their horizontal an-

gles, and thence their distances, may be found, and their re-

lative places fixed in a map of the country ; taking care to

have a sufficient number of angles between intersecting lines,

to verify the operations.

PROBLEM IV.

Given the Angles of Elevation of any Distant object, taken

at Three places in a Horizontal Right Line, which does

not pass through the point directly below the object j and
the Respective Distances between the stations j to find

the Height of the Object, and its Distance from either

station.

Let AED be the horizontal plane : fe the perpendicular

height of the object f above that plane ; A, b, c, the three

places of observation-, faEj fbe,. fce, the respective angles

of
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of elevation, and AB, bc, the

given distances. Then, since

the triangles aef, bef, cef, are

all right angled at E, the di-

stances AE, BE, CE, will mani-

festly be as the cotangents ofthe

angles of elevation at a, b, and

c : and we have to determine

the point E, so that those lines

may have that ratio. To effect

this geometrically, use the following

Construction. Take bm, on Ac produced, equal to' bc,
BN equal to AS ; and make

MG : bm( = EC) : : cot A : cot u,

and bn( = ab) : ng : : cot b : cot c. •

With the lines mn, mg, ng, constitute the triangle mng ;

and join bg. Draw ae so, that the angle eab may be equal tc

MGB ; this line will meet HG produced in e, the point in the

horizontal plane falling perpendicularly below F.

Demonstration. By the similar triangles aeb, gmb, we
have AE : BE : : MG : mb : : cot A : cot b,

and BE : ba( = bn) : : bm : bg.

Therefore the triangles beg, bgn, are similar ; consequently

BE : EC : : BN : ^G : : cot b : cot c. Whence it is obvious

that AE, BE, CE, are respectively as cot a, cot b, cot c.

Calculation. In the triangle mgn, all the sides are given,

to find the angle gmn = angle aeb. Then, in the triangle

MGB, two sides and the included angle are given, to find the

angle mgb = angle eab. Hence, in the triangle aeb, are

known ab and all the angles, to find AE, and be. And then

EF = AE . tan A = BE . tan b.

Otherwise, independent of the construction^ tluis^

Put AB = D, bc = f/, EF = Ji' •, and then express algebraic-

ally the following theorem, given at p. 128 Simpson's Select

Exercises

:

AE- . BC + CE* . AB — BE^ . AC + AC . AB . BC,

the line eb being drawn from the vertex e of the triangle

AGE, to any point b in the base. The equation thence ori-

ginating is

dx- . cot" A + nx'' . cot'c = (d + d)x^ . cot* b + (d + d)T)d.

And from this, by transposing all the unknown terms to one

side, and extracting the root, there results

{D+d)D(l. _^____
^ =^ y rf , cot* A + D . cot' C - (O + C/) cot' b'

Whence
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Whence ep is known, and the distances AE, EE, c£, are

readily found.

Cor. When d — f/, or n -\- d — 2d = 2(1, the expression

becomes better suited for logarithmic computation, being then

.V = d~ ^/(4 cot- A ^-
-i-

cot^ c — COt^ B),

In this case, therefore, the rule is as follows : Double the log«

cotangents of the angles of elevation of the extreme stations,

find the natural numbers answering thereto, and take half

their sum ; from which subtract the natural number answer-

ing to twice the log. cotangent of the middle angle of eleva-

tion : then half the log. of this remainder subtracted from the

log. of the measured distance between the 1st and 2d, or the

2d and 3d stations, will be the log. of the height of the object.

PROBLEM V.

In Any Spherical Triangle, knowing Two Sides and the

Included Angle ; it is required to find the Angle Compre-
hended by the Chords of those two sides.

Let the angles of the spherical tri-

angle be A, B, c, the corresponding A
angles included by the chords A', b', ^ ./S^^<^:4^

c' ; the spherical sides opposite the vv ^ ^^S<*
former a, b, c, the chords respect- ^''^^rrz ..-^^

ively opposite the latter a, |S, y ; then, ^

there are given b, c, and a, to find a'.

Here, from prob. 1 equa. i chap, iv, we have

cos a rz sin b . sin c . cos A + cos b . cos c.

But cos c = cos {\c -\- \c) zz cos^ ^c — sin^ ^c (by equa. V

ch. iii) = O ~ sin- ^t) — sin" ~c = 1—2 sin" ic. And in like

manner cos a = 1 — 2 sin' |f, and cos 6 rz 1 — 2 sin^ ^6.

Therefore the preceding equation becoiiies

1 — 2 sin- ^a z=. 4 sin -b . cos -|-/; . sin ^c . cos ^c . cos A -{-

(1-2 sin- i^) (1-2 sin^ Jc).

But sin -fa rr ^a,, sin ^b rr
^ j3, sin ^c = iy : which values

substituted in the equation, we obtain, after a little reduction,

2 X
^- + y^-"- _ ^^ ^ ^^^ ^^ _ ^^g ^^. ^ cos A + i)SV*«

Now, (equa. ii ch. iii), cos A rr ——~-—~. Therefore, by

substitution,

/S/ . cos a' — ^y . cos ~b , cor- ~c . cos a + ^jSV

;

whence, dividing by fS/, there results

cos a' = cos \b . i-os ~c .'cos a + -i/3
. ^y j

or, lastly, by restoring the values of |/3, ly, we have
cos a' zr cos ib . cos ^c . cos a -\- sin ^b .sin ic. . . (L),

Vol. hi. K Cor.



130 TRIGONOMETRICAL SURVEYING.

Cor. 1. It follows evidently from this formula, that when

the spherical angle is right or obtuse, it is always greater

than the corresponding angle of the chords.

Cor. 2. The spherical angle, if acute, is /ess than the cor-

responding angle of the chords, when we have cos a greater

sin -^b . sin 'c

than r, ""T-
1 —cos \b . COS ^c

PROBLEM VI.

Knowing Two Sides and the Included Angle of a Rectilinear

Triangle, it is required to find the Spherical Angle of the

Two Arcs of which those two sides are the chords.

Here |S, y, and the angle a' are given, to find A. Now,
since in all cases, cos = -v^ ( 1 ~ sin"), we have

cos y) . cos yC = ^/[(I— sin^ ^b) . (1— sin* ^c)]

;

we have also, as above, sin -^b = 4|S, and sin ^c = iy
Substituting these values in the equation i of the preceding,

problem, there will result, by reduction,
coy A'-j/3y .^j .

''°' ^ ~ Vi^-m (1+1^) • (i-fy) -(i + ly) /
'^

To compute by this formula, the values of the sides j3, /,
must be reduced to the corresponding values of the chords of

a circle whose radius is unity. This is easily effected by di-

viding the values of the sides given in feet, or tolses, &c, by

such a power of 1 0, that neither of the sides shall exceed 2,

the value of the greatest chord, when radius is equal to unity.

From this investigation, and that of the preceding problem,

the following corollaries may be drawn.

Cor. 1. If c = by and of consequence y = /S, then will

cos a' = cos A . cos^ ic + sin^ ^c ; and thence

1 —2 sin* ia' = ( 1 - 2 sin* |a) cos" ic+ ( 1 — cos^ Ic)

:

from which may be deduced

sin \a' = sin {A . cos |r. . . . (III.)

Cor. 2. Also, since cos ^c zz^/ {I — sin' ic) =z^{l— i/-),

equa. II will, in this case, reduce to

sm 4.A = -—;—T-^-TrrT-N- • • • (iv.)

Cor. 3. From the equation iii, it appears that the vertical

angle of an isosceles spherical trianglej is always greater than

the corresponding angle of the chords.

Cor. 4. If A = 90'', the formulae i> n, give

cos a' = sin \b . sin ^c =. i/3y. . . . (V.)

These five formulae are strict and rigorous, whatever be
the magnitude of the triangle. But if the triangles be small,

the arcs may be put instead of the sines in equa. V, then
Cor. 5. As cos a' = sin (90°— a') = in this case, 90^ -a';

the small excess of the spherical right angle over the corre-

sponding
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Spending rectilinear angle, will, supposinjr the arcs b, c, taken

in seconds, be given in seconds by the following expression,

90° - a' = Sif - -^,. . . (VI.)
R 4r"

The error in this formula will not amount to a second,

when h 4- c is less than iO", or than 700 miles measured on
the earth's surface.

Cor. 6. If the hypothenuse does not exceed 1|*, we may
substitute a sin c instead of c, and a cos c instead of b ; this

will give be = a"- . sin c . cos c = 'a^.sin 2(90° — b) = !«'.

sin 2b : whence

(90° - A') ='1^ - '^^ (VII.)

If fl= H% and B = c= 45° nearly; then will 90°- A = 17"* 7.

Cor. 7. Retaining the same hypothesis of A = 90", and
fl = or < li°, we have

, i* . cot B he /TTTTT \B-B =_^-^=_ (VIII.)

Alsoc-c'=4^, (IX.)

Cor. 8. Comparing formulae viii, ix, with vi, we have
B — b' = c — c' = i(90° — a'). Whence it appears that the

sum of the two excesses of the oblique spherical angles, over

the corresponding angles of the chords, in a small right-an-

gled triangle, is equal to the excess of the right angle over
the corresponding angle of the chords. So that either of the
formulae vi, vii, viii, ix, will suffice to determine the differ-

ence of each of the three angles of a small right-angled sphe-
rical triangle, from the corresponding angles of the chords.

And hence this method may be applied to the measuring an
arc of the meridian by means of a series of triangles. See
arts. 3, 9, sect. 1 of this chapter,

PROBLEM VII.

In a Spherical Triangle abc. Right Angled at A, knowing
the Hypothenuse Bc (less than 4") and the Angle b, it is

required to find the Error e committed through finding

by Plane Trigonometry, the Opposite Side AC.

Referring still to the diagram of prob. 5, where we now
suppose the spherical angle a to be right, we have (theor. 10
chap, iv) sin b = sin a . sin B. But it has been remarked at

pa. 5 vol. ii, that the sine of any arc a is equal to the sum of

the following series

;

sm A =: A -

or, sin A = A >-

An4,
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And, in the present enquiry, all the terms after the second

may be neglected, because the 5th power of an arc of 4° di-

vided by 120, gives a quotient not exceeding 0"'01. Con-
sequently, we may assume sin ^ ;= ^ — i-/)^, sin a = a — ~a^

;

and thus the preceding equation will become,
b - \b^ = sin B{a — {a^)

or, b = a . sin B — ~{a'^ . sin b — b^).

^ow, if'the triangle were considered as rectilinear, we should

have b •=. a . sin 15 ; a theoreni which manifestly gives the

side b or AC too great by |(a^ . sin b — b^). But, neglecting

quantities of the fifth order, for the reason already assigned-,

the last equation but one gives h^ = a^ . sin^ e. Therefore,

by substitution, e = — 1«3 , sin b(1 —sin" b) : or, to have this

error in seconds, take r" =. the radius expressed in seconds,

so shall e = — a . sin B . ,'. -,. ' .,
.

Cor. 1. If fl = 4% and B =: 35°16', in which case the

value of sin b . go«" b is a maximum, we shall find ezz —4]".

Cor. 2. If, with the same data, the correction be applied,

to find the side c adjacent to the given angle, we should have

e = « . cos B
3r' r"

•

So that this error exists in a contrary sense to the other j the

one being subtractive, the other additive.

Cor. 3. The data being the same, if we have to find the

angle c, the error to be corrected will be

,, , sin 2b

As to the excess of the arc over its chord, it is easy to find ft

correctly from the expressions in prob. 5 : but for arcs that

are very small, compared with the radius, a near approxima-
tion to that excess will be found in the same measures as the

radius of the earth, by taking ^\ of the quotient of the cube
of the length of the arc divided by the square of the radius.

PROBLEM VIII.

It is required to Investigate a Theorem, by means of which,
Spherical Triangles, whose Sides are Small compared with
the radius, may be solved by the rules for Plane Trigono-
metry, without considering the Chords of the respective

Arcs or .Sides.

Let rt, 6, c, be the sides, and a, b, c, the angles of a sphe-

rical triangle, on the surface of a sphere whose radius is r

;

then.
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then a similar triangle on the surface of a sphere whose radius

= I, will have for its sides —, —,
—-j which, for the sake

of brevity, we represent by a, /3, y, respectively : then, by
, , ,

COS a — C'Ofi /3 . <"MS y
equa. i chap, iv, we have cos A z=. -.

—-

—

-. .
•• r »

sill ^ . 5(1, y

Now, r being very great with respect to the sides r/, Z>, c

,

we may, as in the investigation of the last problem, omit all

the terms containing higher than 4th powers, in the series

for the sine and cosine of an arc, given at pa. 5 vol. ii : so

shall we have, without perceptible error,

cosa= 1 --+-5:5j...sm/3=/3--.
And similar expressions may be adopted for cos |3, cos y,
sin y. Thus, the preceding ec^uation will become

^^c A — j(^- + y^ - '<') + ;i(«^ - /^/ - / ) - j<8V
cos A — .-——,—7-

: .

Multiplying both terms of this fraction by 1 H-TO^+ y'^ijtO

simplify the denominator, and reducing, there will result,

cos A = —^.

Here, restoring the values of a, /3, y, the second member of

the equation will be entirely constituted of like combinations

of the letters, and therefore the whole may be represented by

^^^^ = 2^+54^^ (!•)

Let, now, a' represent the angle opposite to the side «, in

the rectilinear triangle whose sides are equal in length to

the arcs a, 6, c ; and we shall have

, b'^-i-c^— a" M
cos A = — = --.

Squaring this, and substituting for cos* A' its value 1 —sin* A',

there will result

- W-c^ sin- A' = rt^+ i^+ c^- 2a'Z**— 2aV - 2iV= N.

So that, equa. i, reduces to the form
*c . , ,

cos A = cos A — -^-r sin^ A

.

_

.

^'

Let A = a'+ X, then, as x' is necessarily very small, its second

power may be rejected, and we may assume cos a n cos a'—
X .sin a': whence, substituting for cos a this value of it, we

shall have ^ = — sin a'.

It hence appears that x is of the second order, with respect
b c

to — and — ; and of course that the result is exact to quan-

titles within the fourth order. Therefore, because A = A'+Xj

A = A + ^ • sni A .

But,
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But, by prob. 2 rule 2, Mensuration of Planes, ^bc sin a' is

the area of the rectiUnear triangle, whose sides are a, hy and c.

Therefore A r= a' -f ;

area
or A = A — ——

.

5;*

area
- ... ") b' = B — -—

.

In like / 3^*

manner f r' = c — ^^^^

J 3r»
'

And a' + b' + c' =: 180° = A + B + c —
area

or, - • = A + B + C - 180°.

Whence, since the spherical excess is a measure of the area

(th. 5 ch. iv), we have this theorem : viz.

^ sp/icriud trianglt being proposed, of which the sides are

vhy small, compared with the radius of the sphere ; iffrom
each of its angles one third of the excess of the sum of its

three angles above two right angles bt subtracted, the angles

so diminished may bt taken Jor the angles of a rectilinear

triangle, whose sides are equal in length to those of the pro^

posed spherical triangle*.

Scholium.

We have already given, at th. 5 chap, iv, expressions for

finding the spherical exce-s, in the two cases, where two sides

and he included angle of a triangle are known, and where
the three sides are known. A few additional rules may with

propriety be presented here.

1. The spherical excess E, mav be found in seconds, by the
r"s .

'

expression e =: —7 5 where s is the surface of the triangle =

»6c . sm A = 4ao . sm c = -^ac . sm b = -kr . —;
, r is* sill (b + C

J

the radius of the earth, in the same measures as a, /;, and c,

and r" = 206'i64"'8, the seconds in an arc equal in length to

the radius.

If this formula be applied logarithmically ; then log r" =
log--T, = 5-3144251.

* This curious theorem was liist imncunced by M. Legendre, in the

Memoirs of the Paris Acatlcmy, for 1787. Lcgendre's investigation is nearly

the same as the above : a shorter iiiv( st igation is given by Swanherg, at p. 40,

of his " Exposition dcs Operations faites en Lapponiej" but it is defective in

point of ptrspicuitj'.

2. From
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5. From the logarithm of the area of the triangle, taken

as a plane one, in feet, subtract the constant log y"3261737,

then the remainder is the logarithm of the excess above 1 80°,

in seconds nearly *.

3. Since s zz ^bc . sin a, we shall manifestly have E =
r"
r— be . sin A. Hence, if from the vertical angle B we demit

the perpendicular bd upon the base Ac, dividing it into the

two segments a, /3, we shall have t/ = a + /3,

and thence e = :^ c(cc \- /3) sin A = — ac. /^
r" • 1 / Vsm A + — /36- . sin a. But the two right- / ; \

angled triangles abd, cbd, being nearly rec- aC_^_£___2j^^
tilinear, give sc=^a . cos c, and ^ =€ . cos A ; i>

whence we have

E = — ac . sm a . cos c \- — d^ . sin a . cos a.

In like manner, the triangle ABC, which itself is so small as to

differ but little from a plane triangle, gives c . sin A =a . sin c.

Also, sin A . cos a — 4- sin 2a, and sin c , cos c =4sin 2c
(equa. XV. ch. iii). Therefore, finally,

r" r"
E = --a^ . sin 2<: + 7—-c^ . sin 2a.

From this theorem a table may be formed, from which the

spherical excess may be found ; entering the table with each

of the sides above the base and its adjacent angle, as argu-

ments.

4. If the base 5, and height A, of the triangle are given,

then we have evidently e = ^bh— . Hence results the fol-

lowing simple logarithmic rule : Add the logarithm of the

base of the triangle, taken in feet, to the logarithm of the

perpendicular, taken in the same measure ; deduct from the

sum the logarithm 9'6278037 ; the remainder will be the

common logarithm of the spherical excess in seconds and
decimals.

5. Lastl}', when the three sides of the triangle are given

in feet ; add to the logarithm of half their sum, the logs, of
the three differences of those sides and that half sum, divide

the total of these 4- logs, by 2, and from the quotient subtract

the log. 9' 32671 37 ; the remainder will be the logarithm of
the spherical excess in seconds &c, as before.

One or other of these rules will apply to all cases in which
the spherical excess will be required.

* This is General Roy's rule given in the Pkilosophical Transactions, for

1790, p. 171.

PROBLEM
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PROBLEM IX.

Given the Measure of a Base on any Elevated Level ; to find

its Measure when Reduced to the Level of the Sea.

Let r represent the radius of the earth, or the distance

from its pentre to the surface of the sea, v -\- h the radius re-

ferred to the level of the base measured, the altitude It being

determined by the rule for the measurement of such altitudes

by the barometer and thermometer, (p. 2.5o vol. ii, 6th edi-

tion) ; let B be the length of the base measured at the eleva-

tion h, and b that of the base referred to the

level of the sea. Then because the measured
base is all along reduced to the horizontal plane,

the two, B and b^ will be concentric and similar

arcs, to the respective radii r -f h and r. There-

fore, since similar arcs, whether of spheres or

spheroids, are as their radii of curvature, we have

r -\- h : r : : & : b := •—-.
r + k

Hence, also b — Z> =: b — t ^
= ,—^ » or, by actually di-

viding b/? by r + h, we shall have

B — b = B X { T + -r. T + ^C.)

Which is an accurate expression for the excess of B above b.

But the mean radius of the earth being more than 21 mil-

lion feet, if /' the ditlerence of level were 50 feet, the second

and all succeeding terms of the series could never exceed

the fraction tt-s-s-^oWo-o-oo » and may therefore safely be ne-

glected : so that for all practical purposes we may assume

B — 6 =r — . Or, in logarithms, add the logarithm of the

measured base in feet, to the logarithm of its height above

the level of the sea, subtract from the sum the logarithm

7-3223947, the remainder will be the logarithm of a number,

which taken from the measured base, will leave the reduced

base required.

PROBLEM x-

To determine the Horizontal Refraction.

1. Particles of light, in passing from any object through

the atmosphere, or part of it, to the eye, do not proceed in a

right line ; but the atmosphere being composed of an infini-

tude of strata (if we may so call them) whose density increases

as they are posited nearer the earth, the luminous rays Avhich

pass
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pass through it a^-e acted on as if they passed successively

through media of increasing density, and are therefore in-

flected more and more towards the earth as the density aug-

ments. In consequence of this it is, that rays from objects,

whether celestial or terrestrial, proceed in curves which are

I'ojicave towards the earth; and thus it happens, since the eye

always refers the place of objects to the direction in which the

rays reach the eye, that is, to the direction of the tangent to

the curve at that point, that the apparent, or observed eleva-

tions of objecLS, are always greater than the true ones. The
difference of these elevations, which is, in fact, the effect of

refraction, is, for the sake of brevity, called refraction : and

it is distinguished into two kinds, horizontal or terrestrial

refraction, beir?g that which affects the altitudes of hills,

towers, and other objects on the earth's surface ; and astro-

nomical refraction, or that which is observed with regard to

the altitudes of heavenly bodies. Refraction is found to vary

with the state of the atmosphere, in regard to heat or cold,

humidity or dryness, &c : so that, determinations obtained for

one state of the atmosphere, will not answer correctly for an-

other, without modification. Tables commonly exhibit the

i-efraction at different altitudes, for some assumed mean state.

2. With regard to the horizontal refrzcuon, the following

method of determining it has been successfully practised in.

the English Trigonometrical Survey.

Let A, a', be tv/o elevated stations on „

the surface of the earth, bd the inter- ^^V\^ ^ .^^i^ii

cepted arc cf the earth's surface, c the ^\:^^^<*^>^-/^'

earth's centre, ah', a'h, the horizontal 'J^-^~~^^^r^ '

lines at a, a', produced to meet the oppo- ^\ /B
site vertical lines ch', ch. Let a, «', re- \ /
present the apparent places of the objects \j
A, a', then is a'a a' the refraction observed c
at A, and a\\ the refraction observed at a' ; and half the
sum of those angles will be the horizontal refraction, if we
assume it equal at each station.

Now, an instrument being placed at each of the stations

A, a', the reciprocal observations are made at the same in-

stant of time, which is determined by means of signals or
watches previously regulated for that purpose : that is, the
observer at A takes the apparent depression of a', at the
same moment that the other observer takes the apparent
depression of A.

In the quadrilateral aca'i, the two angles a, a' are right

angles, and therefore the angles i and c are together equal to

two right angles : but the three angles of the triangle iaa'

are
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are together equal to two right angles; and consequently the

angles A and a' are together equal to the angle c, which is

measured by the arc BD. If therefore the sum of the two
depressions u&'a, n'Ao'y be taken from the sum of ti e angles

ha'a, h'aa', or, which is equivalent, from the angle c, (which

is known, because its measure BD is known^ ; the remainder

is the sum of both refractions, or angles i'/a'a, a' aa'. Hence
this rule, take the sum of the fn'o deprt.ysioiisjnmi the viea~

sure of the lalercepted terrestrial arc, haJj the remainder is

the refraction.

3. If, by reason of the minuteness of the contained arc bd,

one of the objects, instead of being depressed, appears ele-

vated, as suppose a' to a": then the sum of the angles a"kh and.

ax'A will be greater than the sum iaa' + ia'a, or than c, by
the angle of elevation «''aa' ; but if from the former sum
there be taken the depression ha'a, there will remain the

sum of the two refractions. So that in this case the rule be-

comes as follows: take the depression from the sum of the

contained arc and elevation^ half the remainder is the re-

fraction.

4. The quantity of this terrestrial refraction is estimated

by Dr. Maskelyne at one-tenth of the distance of the object

observed, expressed in degrees of a great circle. So, if the

distance be 10000 fathoms, its 10th part, 1000 fathoms, is

the 60th part of a degree of a great circle on the earth, or 1',

which therefore is the refraction in the altitude of the object

at that distance.

But M. Legendre is induced, he says, by several experi-

ments, to allow only xV*^^ P^''^ of the distance for the refrac-

tion in altitude. So that, on the distance of 10000 fathoms,

the 14th part of which is T14 fathoms, he allows only 44-" of

terrestrial refraction, so many being contained in the 714
fathoms. See his Memoir concerning the Trigonometrical

operations, &c.

Again, M. Delambre, an ingenious French astronomer,

makes the quantity of the terrestrial refraction to be the 1 1th

part of the arch of distance. But the English measurers,

especially Col. Mudge, from a multitude of exact observa-

tions, determine the quantity of the medium refraction to be
the 1 2th part of the said distance.

The quantity of this refraction, however, is found to vary

considerably, with the different states of the weather and at-

mosphere, from the ^th to the -^Vth of the contained arc.

See Trigonometrical Survey, vol. 1 pa. 160, 355.

Scholiu7H.
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ScholiiDn.

Having gu'cn the mer.n results of observations on the ter-

restrial refraction, it may not be amiss, though we cannot

€nter at hirge into the investigation, to present here a correct

table of mean astronomical refractions. The table which has

been most comnionly given in books of astronomy, is Dr.

Bradley's, compi'ted from the rule r =: 57" x cot {a -}- 3r),

where a is the altitude, r the refraction, and /• = 2'35" when
a = 20°. But it has been found by numerous observations,

that the refractions thus computed are rather too small.—
Laplace, in his Mecanique Celeste (tome iv pa. 27) deduces

a formula which is strictly similar to Bradley's ; for it is

r = m X tan (2 — nr), where 2 is the zenith distance, and m
and n are two constant quantities to be determined from ob-

servation. The only advantage of the formula given by the

French philosopher, over that given by the English astrono-

iner, is, that Laplace and his colleagues have found more
correct coefficients than Bradley had.

Now, if R = 57°-2957795, the arc equal to the radius, if

we make m r= —, (where >t is a constant coefficient which, as

well as 11, is an abstract number,) the preceding equation will

become - = ^ x tan (z — nr). Here, as the refraction ;• is

always very small, as well as the correction 7ir, the trigono-

metrical tangent of the arc «;• may be substituted for — j thus

we shall have tan nr = k . tan (z — nr).

But nr = is - {iz - nr) . . . . z - 7ir = \z -\- {^z - nr),

, z z—2nr
tan ( — ) . . , „ X

-, tan nr 2 2 sin z — sin (2 — 2nr) __ ,

^' tSLii (z — m) ^ ,z z — 2nr sin a + sin (z— 2wr)
~~'

^ tanf— + )

2 2 '

Hence, sin {z - 2nr) = ^-^ . sin z,

1 - k
This formula is easy to use, when the coefficients 7i and -

—

are known : and it has been ascertained, by a mean of many
observations, that these are 4 and '99765175 respectively.

Thus Laplace's equation becomes
sin (3 — 8r) = -99765175 sin z :

and from this the follo'ving table has been computed. Besides

the refractions, the diti^erences of refraction, for every 10
minutes of altitude, are given ; an addition which will render
the table more extensively useful in all cases where great ac-

curacy is required.

Table



HO TllIGONOMETRICAL SURVEYING.



11BFR4CTION'. I4i

PROBLEM XI.

To find the Angle made by a Given Line with the

Meridian.

1. The easiest method of finding the angular distance of a

given line from the mcridi;in, is to measure the greatest and

the least angular distance of the vertical plane in which is the

6tar marked a in Ursa minor (commonly called the po/e star)^

from the said line : for half the sum of these two measures

will manifestly be the angle required.

2. Another method Is to observe when the sun is on the

given line ; to measure the altitude of his centre at that time,

and correct it for refraction and parallax. Then, in the sphe-

rical triangle zps, where z is the zenith

of the place of observation, P the ele-

vated pole, and s the centre of the

sun, there are supposed given zs the

zenith distance, or co-altitude of the

sun, PS the co-declination of that lu-

minary, pz the co-latitude of the place of observation, and
ZPS the hour angle, measured at the rate of 15" to an hour,

to find the angle szp between the meridian pz and the ver-

tical zs, on which the sun is at the given time. And here,

as three sides and one angle are known, the required angle is

readily found, by saying, as sine zs : sine zps : : sine PS :

sine pzs ; that is, as the cosine of the sun's altitude, is to the

sine of the hour angle from noon ; so is the cosine of the

sun's declination, to the sine of the angle made by the given

vertical and the meridian.

Note. Many other methods are given in books of Astro-

nomy, but the above are sufficient for our present purpose.

The first is independent of the latitude of the place ; the se-

cond requires it.

PROBLEM XII.

To find the Latitude of a Place.

The latitude of a place may be found by observing the
greatest and least altitude of a circumpolar star, and then
applying to each the correction for refraction ; so shall half

the sum of the altitudes, thus corrected, be the altitude of
the pole, or the latitude.

For,
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For, if P be the elevated pole, st

the circle described by the star, PR

= EZ the latitude : then since vs =
p/, PR must be = -^{Kt + ns).

This method is obviously indepen-

dent of the declination of the star :

it is therefore most commonly adopt-

ed in trigonometricul surveys, in

which the telescopes employed are

of such power as to enable the observer to see stars In the

day-time : the pole-star being here also made use of.

Numerous other methods of solving this problem likewise

are given in books of Astronomy; but they need not be de-

tailed here.

Carol. If the mean altitude of a circumpolar star be thus

measured, at the two extremities of any arc of a meridian, the

difference of the altitudes will be the measure of that arc :

and if it be a small arc, one for example not exceeding a de-

gree of the terrestrial meridian, since such small arcs differ

extremely little from arcs of the circle of curvature at their

middle points, we may, by a simple proportion, infer the

length of a degree whose middle point is the middle of that

arc.

Scholium.

Though it is not consistent with the purpose of this chap-

ter to enter largely into the doctrine of astronomical spherical

problems ;
yet it may be here added , for the sake of the young

student, that if a = right ascension, d = declination, I =
latitude, A = longitude, p = angle of position (or, the angle

at a heavenly body formed by two great circles, one passing

through the pole of the equator and the other through the

pole of the ecliptic), i zz inclination or obliquity of the eclip-

tic, then the following equations, most of which are new^

obtain generally, for all the stars and heavenly bodies,

1. tan a = tan A . cos t — tan I . sec X . sin i.

2. sin d = sin A . cos / . sin z -f sin I . cos i.

3. tan A = sin i . tan d. seca-\- tan a . cos i.

4. sin I =. sin d . cos i — sin fl . cos d . sin /.

5. cotan p = cos d . sec a . cot i -|- sin ^ . tan a.

6. cotan p = cos / . sec A . cot i — sin I . tan A.

7. cos a . cos d = cos / . cos A.

8. sin p . cos d = sin 2 . cos A.

9. sin p . cos A = sin i . cos a.

10. tan a = tan A . cos i. 1 when Z = 0, as is always the case

11. cos A = cos a . cos d. y with the sun.

The
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The investigation of these equations, which is omitted for

the sake of brevity, depends on the resolution of the spheri-

cal triangle whose angles are the poles of the ecliptic and

equator, and the given star, or luminary.

PROBLEM XIII.

To determine the Ratio ofthe Earth's Axes, and their Actual

Magnitude, from the Pleasure of a Degree or Smaller

Portion of a Meridian in Two Given Latitudes ; the earth

being supposed a spheroid generated by the rotation of an

ellipse upon its minor axis.

Let ADBE represent a meridian

of the earth, de its minor axis,

AB a diameter of the equator,

M, vii arcs of the same number
of degrees, or the same parts of

a degree, of which the lengths

are measured, and which are so

small, compared with the mag-
nitude of the earth, that they

may be considered as coinciding with arcs of the osculatory

circles at their respective middle points; let mo, 7no, the radii

ofcurvature of those middle points, be r: R and r respectively;

MP, mpy ordinates perpendicular to ab : suppose further CDrzc;

CB = ^/ j (T- — c^ =. e^ ; cp = X ; c/> = u ; the radius or sine

total = 1 -, the known angle bsm, or. the latitude of the mid-
dle point M, =: L ; the known angle Bsm, or the latitude of

the point m, zr / ; the measured lengths of the arcs M and
m being denoted by those letters respectively.

Now the similar sectors whose arcs are M, m, and radii of

curvature r, r, give R : r : : m : w ; and consequently R/?i =r

rM. The central equation to the ellipse investigated at p. 29

of this volume gives PM=— */{d^—x'^)\ pin-z^A/id^ ~ m*);

also sp = — ; sp = -7 (by th. 17 Ellipse). And the method

of finding the radius of curvature (Flux. art. 74, 75), ap-

plied to the central equations above, gives

(d*-eV)^ J (d*-f^7')' ^ , .-11,
R = ; and r = —-. On the other hand,

c*d c'rt

the triangle spm gives sp : pm : : cos l : sin l ; that is,

— : -— \/(a — .r-) : : cos l : sm L ; whence x'- — -—
, . . .

d^ cos^ I

And from a like process there results, U' = ^^_ ^
'.

^ ^
.

Substituting in the equation rw» = rM, for R, and r their

values.
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values, for x^ and iC- their values just found, and observing

that sin* L -f- cos^L = 1, and sin" /+ cosV= 1, v/e shall find

or m{d^ — e^ sin' /)^ = M(ri* - f* sin- l)^,

or W(rf* — e- sin"- /) = M ^(</* — f" sin" l).

From this there arises t^ = d^ — c^ (by hyp.) =

-^
. But — =z 1 -

(I'l ill
»

and consequently the reciprocal of this fraction, or

(f* m' siii^ L — -Mi' siii2 Z (m^ sin L + w^ sin /) . (m' sin L — wj^ sin /)'

c* i i I J- i L
'

m^ cos" i— m^cos'l (m' cos /+ m^cosl) (w^ cos /— m^cos i.>

AVhence, by extracting the root, there results finally

i . -1 i -1

d /(^'^ sin t + m^ sin i) • (^ ^ sin t — to^ sin Z)

C L ' 1_ 1
*

(m^ cos/+ M^ cosl) - (m^ cos i — m^ cos l)

This expression, which is simple and s^^mmetrical, has been
obtained without any developement into series, without any
omission of terms on the supposition that they are indefinitely

small, or any possible deviation from correctness, except what
may arise from the want of coincidence of the circles of cur-

vature at the middle points of the arcs measured, with the arcs

themselves ; and this source of error may be diminished at

pleasure, by diminishing the magnitude of the arcs measured:

though it must be acknowledged that such a procedure may
give rise to errors in the practice, which may more than coun-

terbalance the small one to which we have just adverted.

Cor. Knowing the number of degrees, or the parts of de-

grees, in the measured arcs M, m, and their lengths, which
are here regarded as the lengths of arcs to the circle which,

have R, 7% for radii, those radii evidently become known in

magnitude. At the same time there are given the algebraic

values of R and 7' : thus, taking r for example, and extermi-

nating c^ and .t% there results R = -. There-
c(a^'-(f/2-c2)sin'« l)2

fore, by putting in this equation the known ratio of d to C,

there will remain only one unknown quantity d or c, which
may of course be easily determined by the reduction of the

last equation ; and thus all the dimensions of the terrestrial

spheroid will become known.

General
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General Scholium and Remarks.

1. The value ~ 1, r= -^, is called the compression of

the terrestrial spheroid, and it manifestly becomes known

when the ratio— is determined. But the measurements of
c

philosophers, however carefully conducted, furnish resulting

compressions, in which the discrepancies are much greater

than might be wished. General Roy has recorded several

of these in the Phil. Trans, vol. 77, and later measurers have

deduced others. Thus, the degree measured at the equator

by Bouguer, compared with that of France measured by

Mechain and Delambre, gives for the compression — , also

d = 3271208 toises, c — 3261443 toises, (/-c= 9765 toises.

General Roy's sixth spheroid, from the degrees at the equa-

tor and in latitude 45% gives -n^^ • Mr. Daiby makes d =
3489932 fathoms, c = 3473656. Col. Mudge d — 3491420,

c = 3468007, or 7935 and 7882 miles. The degree mea-

sured at Quito, compared with that measured in Lapland by

Swanberg, gives compression = ^^^^«
Swanberg's obser-

vations, compared with Bouguer's, give ^^^^ Swanberg*s

compared with the degree of Delambre and Mechain -
. .

Compared with Major Lambton's degree ^„., _ . A minimum

of errors in Lapland, France, and Peru gives — -. Laplace,

from the lunar motions, finds compression = ~. From the

theory of gravity as applied to the latest observations of Burg,

Maskelyne, &c, -^ — . From the variation ofthe pendulum

in different latitudes - - . Dr. Robison, assuming the va-

riation of gravity at jgQj makes the compression — . Others

give results varying from y^ to — : but far the greater

number of observations differ but little from — , which the

computation from the phenomena of the precession of the
equinoxes and the nutation of the earth's axis, gives for the
maximum limit of the compression.

2. From the various results of careful admeasurements it

happens, as Gen. Roy has remarked, " that philosophers are
Vol. hi. L not
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not yet agreed in opinion with regard to the exact figure of

the earth-, some contending that it has no regular figure, that

is, not such as would be generated by the revolution of a

curve around its axis. Others have supposed it to be an
ellipsoid ; regular, if both polar sides should have the same
degree of flatness ; but irregular if one should be flatter than

the other. And lastly, some suppose it to be a spheroid dif-

fering from the ellipsoid, but yet such as would be formed by
the revolution of a curve around its axis." According to the

theory of gravity, however, the earth must of necessity have
its axes approaching nearly to either the ratio of 1 to 680 or

of 303 to 304 ; and as the former ratio obviously does not

obtain, the figure of the earth viiist be such as to correspond

nearly with the latter ratio.

3. Besides the method above described, others have been

proposed for determining the figure of the earth by measure-

ment. Thus, that figure might be ascertained by the mea-
surement of a degree in two parallels of latitude ; but not so

accurately as by meridional arcs, 1st. Because, when the di-

stance of the two stations, in the same parallel is measured,

the celestial arc is not that of a parallel circle, but is nearly

the arc of a great circle, and always exceeds the arc that cor-

responds truly with the terrestrial arc. 2dly. The interval

of the meridian's passing through the two stations must be

determined by a time-keeper, a very small error in the going

of which will produce a very considerable error in the com-
putation. Other methods which have been proposed, are, by
comparing a degree of the meridian in any latitude, with a

degree of the curve perpendicular to the meridian in the same

latitude •, by comparing the measures of degrees of the curves

perpendicular to the meridian in different latitudes j and by

comparing an arc of a meridian with an arc of the parallel of

latitude that crosses it. The theorems connected with these

and some other methods are investigated by Professor Play-

fair in the Edinburgh Transactions, vol. v, to which, together

with the books mentioned at the end of the 1st section of this

chapter, the reader is referred for much useful information

on this highly interesting subject.

Having thus solved the chief problems connected with

Trigonometrical Surveying, the student is now presented

with the following examples by way of exercise.

Ex. 1. The angle subtended by two distant objects at a

third object is 66°30'39" ; one of those objects appeared under

an elevation of 25'47", the other under a depression of l*.

Required the reduced horizontal angle. Ans. 66°30'3T'.

Ex. 2.
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E.r. 2. Going along a straight and horizontal road which
passed by a tower, I wished to find its height, and for this

purpose measured two equal distances each of 84 feet, and at

the extremities of those distances took three angles of eleva-

tion of the top of the tower, viz, 36** 50', 21° 24', and 14°.

What is the height of the tower ? Ans. 53-96 feet.

E:t. 3. Investigate General Roy's rule for the spherical

excess, given in the scliolium to prob. 8.

Ex. 4. The three sides of a triangle measured on the

earth's surface (and reduced to the level of the sea) are 17, 18,

and 10 miles : what is the spherical excess ?

Ex. 5. The base and perpendicular of another triangle

are 24 and 15 miles. Required the spherical excess.

Ex. 6. In a triangle two sides are 18 and 23 miles, and
they include an angle of 58''24'36'''. What is the spherical

excess ?

Ex. 1. The length of abase measured at an elevation of

38 feet above the level of the sea is 34286 feet : required the

length when reduced to that level.

Ex. 8. Given the latitude of a place 48°51'n, the sun's

declination 18°30'n, and the sun's altitude at 10*^1 1"26^am,
52''35'; to find the angle that the vertical on which the sun

is, makes with the meridian.

Ex. 9. When the sun's longitude is 29^1 3'43", what is

his right ascension ? The obliquity of the ecliptic being
23''27'40".

Ex. 10. Required the longitude of the sun, when his right

ascension and declination are 32°46'52"i, and 13''13'27"n

respectively. See the theorems in the scholium to prob. 12.

Ex. 1 1 . The right ascension of the star a Ursje majoris

is 162°50'34", and the declination 62''50'n : what are the

longitude and latitude ? The obliquity of the ecliptic being

as above.

Ex. 1 2. Given the measure of a degree on the meridian

inN. lat.49''3', 60833 fathoms, and of another in Nlat. 12''32',

60494 fathoms : to find the ratio of the earth's axes.

Ex. 1 3. Demonstrate that, if the earth's figure be that

of an oblate spheroid, a degree of the earth's equator is the

first of two mean proportionals between the last and first de-

grees of latitude.

Ex. 14. Demonstrate that the degrees of the terrestrial

meridian, in receding from the equator towards the poles, are

L 2 increased
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increased very nearly in the duplicate ratio of the sine ofthe
latitude.

E.V. !5. l( p he the measure of a degree of a great circle

perpendicular to a meridian at a certain point, m that of the

corresponding degree on the meridian itself, and d the length
of a degree on an oblique arc, that arc making an angle a

with the meridian, then is d = ,

^'^
,
— . Required 3

demonstration of this theorem.

CHAPTER VI.

PRINCIPLES OF POLVGONOMETRY.

The theorems and problems in Polygonometry bear an in-

timate connection and close analogy to those in plane trigo-

nometry; and are in great measure deducible from the same
common principles. Each comprises three general cases.

1. A triangle is determined by means of two sides and an

angle ; or, which amounts to the same, by its sides except

one, and its angles except two. In like manner, any rectili-

near polygon is determinable when all its sides except one,

and all its angles except two, are known.
2. A triangle is determi-ned by one side and two angles j

that is, by its sides except two, and all its angles. So like-

wise, any rectilinear figure is determinable, when all its sides

except two, and all its angles, are known.
3. A triangle is determinable by its three sides ; that is,

when all its sides are known, and all its angles, but three. In

like manner, any rectilinear figure is determinable by means
of all its sides, and all its angles except three.

In each of these cases, the three unknown quantities may
be determined by means of three independent equations; the

manner of deducing which may be easily explained, after the

following theorems are duly understood.

THEOREM I.

In Any Polygon, any One Side is Equal to the Sum of all

the Rectangles of Each of the Other Sides drawn into the

Cosine of the Angle made by that Side and the Proposed

Side*.

• This theorem and the following one, were announced by Mr. Lexel of

Petersburtf, in Pliil. Trans, vol. Go, p. 285 : hut they were first demonstrated

by Dr. Hutton, in Phil. Traus. vol. 66, pa. 600.

Let
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Let ABCDEF be a polygon : then will

AF = AB . cos A 4- BC . COS CB "^ FA +
CD . COS CD '^ AF 4- DE . COS DE ^ AF +
EF . COS EF "^ AF*.

For, drawing lines from the several

angles, respectively parallel and per-

pendicular to AF; it will be

A^ =: AB . cos BAF,

^C = B(3 = BC . cos CB/3 = BC . cos CB ^ AF,

Cd = Sd = CV) . COS CDO = CD . COS CD A AF,

de = £E = T>E . COS DE£ = DE . COS DE '^ AF,

CF = . . . . EF . COS BVe Z=. EF . COS EF ^ AF.

But AF = be -{- cd -\- dc -^^ eF — Ab ; and Ab, as expressed

above, is in effect subtractive, because the cosine of the obtuse

angle baf is negative. Consequently,

AF = AC + £•(/+ de -\-eF = AB .cos raf + bc . cos CB''AF+ &C,
as in the proposition. A like demonstration will apply, mu-
tatis mutandis^ to any other polygon.

Co}\ When the sides of the polygon are reduced to three,

this theorem becomes the same as the fundamental theorem
in chap, ii, from which the whole doctrine of Plane Trigo-

nometry is made to flow.

THEOREM II.

The Perpendicular let fall from the Highest Point qr Summit
of a Polygon, upon the Opposite Side or Base, is Equal to

the Sum of the Products of the Sides Comprised between
that Summit and the Base, into the Sines of their Re-
spective Inclinations to that Base.

Thus, in theprecediHg figure, cc= CB . sincB'^FA + BA.sinA;

or cc= CD .sin cDA^p-f de . sin de^af -fEF . sin f. This
is evident from an inspection of the figure.

Cor. 1. In like manner T>d= de . sin de'^af -f- EF . sin f,

or Dd=. c]i . sin cb^fa + ba . sin a — cd . sin cd-^af.

Cor. 2. Hence, the sum of the products of each side, into

the sine of the sum of the exterior angles, (or into the sine of
the sum of the supplements of the interior angles), comprised

between those sides and a determinate side, is = + perp. —
perp. or = 0. That is to say, in the preceding figure, -

AB . sin A + BC . sin (a -|- b) + CD . sin (a + B -f c) -f de . sin

(a + b -}- c + d) -f- EF . sin (a + B -}- c -j- d + e) r: 0.

* When a caret is put between two letters or pairs of letters denoting lines,

tlie expression altogether denotes the angle which would be made by those

two lines if they were produced till they met ; thus cb^f/ denotes the in-

clination of the line cb to fa.

Here
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Here it is to be observed, that the sines of angles greater than
180' are negative (ch. ii equa. Vii).

Cor. 3. Henceagain,byputtingforsin(A + B),sin(A-i-B+ c),

their values sin A , cos B 4- sin B . cos a, sin a . cos (b+c)+
sin (b + c) . cos A, &c (ch. ii equa. v), and recollecting that

sin
tang = — (ch. ii p. 55)^ we shall have,

sin A. (ab-j-bc.cosb + cd.cos(b 1-c)+de.cos(b4-c4-d)-}-&c)

-f cosa.(bc .sinB -f CD.sin(B + c)+de.cos(b + c+ D)4-&c)=0i
and thence finally, tan 180'— A, or tan baf =
BC . '^in B + CD . sin (b + g)+ DE sill (b + c+ d)+ EF . sin (b + c-I»d + e)

>B+ BC .COS B + CD .CUS^^B+ c) + DE . COs(b + C + d)+ EF . COS (B + C + D + E)*

A similar expression will manifestly apply to any polygon ;

and when the number of sides exceeds four, it is highly use-

ful in practice.

Cor. 4. In a triangle abc, where the sides ab, bc, and the

angle abc, or its supplement b, are known, we have
BC . sin B AB . sin b

tan cab = — .... tan bca =
AB+BC.COSB BC+AB.COSB

in both which expressions, the second term of the denomi-
nator will become subtractive whenever the angle abc is

acute, or b obtuse.

THEOREM III.

The Square ofAny Side of a Polygon, is Equal to the Sum of

the Squares of All the Other Sides, Minus Twice the Sum
of the Products of All the Other Sides Multiplied two and
two, and by the Cosines of the Angles they Include.

For the sake of brevity, let the sides

be represented by the small letters which

stand against them in the annexed figure

:

then, from theor. I, we shall have the

subjoined equations, viz. -^

a = 6 . cos a^b -{- c . cos a^ c -]- S . cos a^S^
b — a . cos a ^ b ^ c . cos h ^ c -\- 8 . cos b ^ $y

c = a . cos a'^ c + b . cos b ^ c + S . cos c^$,

IS = a . cos a^d -\- b . cos b f' d -^ c . cos c ^ ^,

Multiplying the first of these ecjuations by «, the second by
bf the third by c, the fourth by $ ; subtracting the three latter

products from the first, and transposing 6^, c*, J', there will

result

«* = A'+.c*+ J' — 2(k . cos b^ci- bd . cos b^^+d . cos c^^r

Jn like manner,

fi^-a^-j-b^-^$''-2{ab.cosa^b-\-ei$.cosa^$+b$,cosb^9%
&c. &c.

Or,
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Or, since ^V = c, b'^$ = c -f d - 180°, c^$ = d, we have
fl'' = /^"+C*H- ^*-2(/>f.C0SC-^^.C0S(C+D)+ f^.COS D),

i,"^ =: a' + b"- + S"- - 2iab . cos B-^^. cos (a+b) + o^.cos a),

&c. &c.
The same method applied to the pentagon abode, will give

\ +cd . cos D — ce, cos (d + e) + rfe . cos e )

And a like process is obviously applicable to any number of
sides ; whence the truth of the theorem is manifest.

Co?'. The property of a plane triangle expressed in equ. I.

ch. ii, is only a particular case of this general theorem.

THEOREM IV.

Twice the Surface of Any Polygon, is Equal to the Sum of

the Rectangles of its Sides, except one, taken two and two,

by the Sines of the Sums of the Exterior* Angles Con-
tained by those Sides.

1 . For a trapezium, or polygon of four A.

sides. Let two of the sides ab, dc, be /^ \
produced till they meet at p. Then the .X / \
trapezium abcd is manifestly equal to the y' \' \
difference between the triangles pad and P V B
PBC. But twice the surface of the tri-

angle PAD is (Mens, of Planes pr. 2 rule 2) A? . PD . sin p =
(ab -1- Bp) . (dc + cp) . sin p ; and twice the surface of the
triangle pbc is = bp . pc . sin P : therefore their difference,

or twice the area of the trapezium, is = (ab . dc + ab . cp

+ DC . bp) . sin p. Now, in A pbc,
. DC . sin B

sm P : sm B : : BC : PC, whence PC z:: —:

,
sill p '

• • BC sm c
sm P : sm c : : EC : pb, whence pb = —7 .

sni p

Substituting these values of PB, PC, for them in the above
equation, and observing that sin p = sin (PBC + pcb) = sin

sum of exterior angles b and c, there results at length.

Twice surface / I , * " . ^ , \
r, • f-

= < + ab . DC . sm (b 4- c)
or trapezmm. I j . ^ '

J (_ + BC . DC . Sin c.

Cor. Since ab . bc . sin b = twice triangle abc, it follows

that twice triangle ACois equal to the remainingtwo terms, viz,

AB . DC . sin (b + c)
twice area acd = . , ^^

( + BC . DC . sm c.

• The exterior angles here meant, are those formed by producing the

sides in the same manner as in tb. 20 Geometry, aud in cors. 1, 2, th. 2, of

tliis chap.

2. For
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2. For a pentagon, as abcde. Its area

is obviously equal to the sum of the areas

of the trapezium abcd, and of the tri-

angle ADE. Let the sides ab, dc, as be-

fore, meet when produced at p. Then,

from the above, we have

Twice area of") (* ab . bc ,

the trapezium > rr -j -}- ab . dc .

ABCD J (_+ BC . DC .

And, by the preceding corollary.

sm B

sin (b + c)

sin c.

Twice triangle )

DAE }-{
AP . DE . sin (p + d) or sin (b + c + d)

That is, twice

triangle dae

, sin (b 4- c + d)

sin D
sin (b + c -|-d)

sin D.

Now,BP
sill (b + c)

, and cp =

two terms become
BC . DE . Sin c

bill (B + C)

sir, (b + C + d)

therefore the last

+
BC . DE .sm B . Sin D

bill (b+ c) sin (b + c)

sin B sin D + sin c . sin (b + c + d) i , •= bc . DE . : , : and this expression,
§in ^3 + c) ^ '

by means of the formula for 4- arcs (art. 30 ch. iii), becomes

BC . DE . sin (c + d). Hence, collecting the terms, and ar«

ranging them in the order of the sides, they become
r AB . BC . sin B

rr^ . , -, + AB . DC . sin (b + c)
Twice the areaT

I «t, r^r-
v, "r

^

r 1 I
.'+ AB . DE

ofthepenta-[-=^_ ^ ^^ ^

gon ABCDE J

[

+ BC

+ BC

DC
DE

+ DC . DE . sin p.

sin (b + c + d)

sin c

sin (c + d)

Cor. Taking away from this expression the 1st, 2d, and

4th terms, which together make double the trapezium abcd,

there will remain

Twice area of") f ab.de. sin (b-|-c + d)

4- BC . DE . sin (c + d)

+ DC . DE . sin D.

nil remain

wice area of") f

the triimgle [ = "{

DAE. J i

3. For a hexagon, as AP.CDEF. The
double area will be found, by supposing

it divided into the pentagon abcde, and

the triangle aef. For, by the last rule,

and its corollary, we have,

Twice
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Twice area of")

r AB . BC . sin B

+ AB . CD . sin (b -J- c)
iwice area or .

J
4. ^3 . i,^ . ,1,, (b + c + d)

the pentagon
[
=

j
^. ^c . cd . sin c

-'
-f EC . DE . sin (c + d)

ABCDE

Twice area of

the triangle

AEF

Or, twice area of

the triangle

AEF.

1={

1=

-\- CD . DE . Sin D.

AP . EF . sin ( B + C + D + E)

+ DP . EF . sin (d -j-e)

-f DE . EP . sin E.

f AB . EF . sin ( B + C + D + E)

I -f DC EF . sin (d + e)

^ 4- DE EF . sin E

-f BP . EF . sin ( B -f- C + D -f e)

-f CP . EF . sin (d + e).

Twice the areal

of the hexa- r

gon abcdef J

Now, writing for BP, CP, their respective values,

BC . sin c , BC . sin n , r ^ 1 ^ ^^ and , the sum 01 tne last two expressions,
sill (b+ c) sin (b + c) *

in the double areas of aef, will become
sin c . s.in (b + c + D + Ej + sln c . sin (d+ e)

^'^ • ^^ •

"

si^B+ C)
~ •

and this, by means of the formula for 5 arcs (art. 30 ch. iii)

becomes bc . ef . sin (c+ d+ e). Hence, collecting and pro-

perly arranging the several terms as before, we shall obtain

r AB . BC . sin B

1 + AB . CD . sin (b -1- c)

I + AB . DE . sin (b -|- c + d)

-{- AB . ef . sin (b + C + D + e)

+ BC . CD . sin c

-}- BC . DE . sin (c 4-d)

+ BC . EF . sin (c + D 4- e)

4- CD . DE . sin D
4- CD . EF . sin (d 4- e)

,4- DE . EF . sin E.

4. In a similar manner may the area of a heptagon be de-

termined, by finding the sum of the areas of the hexagon and

the adjacent triangle*, and thence the area of the octagon,

nonagon, or of any other polygon, may be inferred ; the law

of continuation being sufficiently obvious from what is done

above, and the number of terms = —r- .
——> when the num-

ber of sides of the polygon is n : for the number of terms is

evidently the same as the number ofways in which 7Z— 1 quan-

tities can be taken, two and two; that is, (by the nature of
_ . . 72— 1j1— 2
rermutationsj = —-- .

—--

.

Scholium,
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Scliolium.

This curious theorem was tirst investigated by Simon LhuU'
li'ery and published in 1789. Its principal advantage over the

common method for finding the areas of irregular polygons

is, that in this method there is no occasion to construct the

figures, and of course the errors that may arise from such

constructions are avoided.

In the application of the theorem to practical purposes, the

expressions above become simplified by dividing any proposed

polygon into two parts by a diagonal, and computing the sur-

face of each part separately.

Thus, by dividing the trapezium abcd into two triangles,

by the diagonal Ac, we shall ha^e

Twice area 1 _ f ab . bc . sin b

trapezium 5
~~

1 + CD . ad . sin d.

The pentagon abcde may be divided into the trapezium

ABCD, and the triangle ade, whence
r AB . BC . sin B

Twice area of) _ j + ab . dc . sin (b + c)

pentagon ji
~

1 + bc . do . sin c

{.-j- DE . AE . sin E.

Thus again, the hexagon may be divided into two trape-

ziums, by a diagonal drawn from A to d, which is to be the

line excepted in the theorem j then will

r AB . BC . sin B

-f- AB . DC . sin (b -}- c)

Twice area of ^ __ ' + bc . dc . sin c

hexagon j
""

; + de . ep . sin e

I
+ DE . AF . sin (e + f)

1+ EF . AF . sin F,

And lastly, the heptagon may be di-

vided into a pentagon and a trapezium,

the diagonal, as before, being the ex-

cepted line : so will the double area be ex-

pressed by 9 instead of 1 5 products, thus

:

" AB . BC . sin B ^
-}- AB . CD . sin (b 4- c)

+ AB . DE . sin (b -f c -}- d)

-I- BC . CD . sin c

+ BC . DE . sin (c -|- d)
-1- CD . DE . sin D

I -{- EF . FG . sin F

{ + EF . GA . sin (f -f G)

l_+ FG . GA . shl G.

The same method may obviously be extended to other

polygons, with great ease and simplicity.

It

Twice area ofl _
heptagon S

""
|



POLYGONOMETRY. 155

It often happens, however, that only one side of a polygon

can be measured, and the distant angles be determined by in-

tersection ; in this case the area may be found, independent

of construction, by the following problem.

PROBLEM I-

Given the Length of One of the Sides of a Polygon, and the

Angles made at its two extremities by that Side and Lines

drawn to all the Other Angles of the Polygon ; to find an

Expression for the Surface of that Polygon.

Here we suppose known pq ; also ^

APa = a, BPa = b', cpa=:c', DPa = d'y ^^
AQP = d', BQP = 6",CQP = C", DQP = d"

.

Now/ sin PAG = sin (a -f- a'')-^ sin pbq =
sin {b' + b").

Therefore, sin (a' + a") -. pa sm a

: sin b''

PA = Pq,
.Sill i^u' + a")

sin b''

PB = __^_,- PQ.And, ... sin lb' + b") : pq . . , ,

But, triangle apb =: ap . pb , |: sin apb = -?^ap . pb . sin (a'—b'),

T-r r A T a s\n a" . sin b'' . sin (a'- L^)
Hence, surface A apb = ^pq

In like manner, A bpc = iPQ'

A CPD = ivd

&c. &c.

A DPQ zz a? . PB . ^ sin DPa

^pa^.
sin d'

.

2
bin [a'+ a") . sm {b' + b")'

sin b" . sin c''
. sin (b' — c)

sin {b' + b") . sin (c' + c")*
sin c" . sin d'' . sin

{
c — d')

sin {(/+ c") . sjn t^d ^^)'
&C.

sin d"

nrf"

sin (d' + d")

Surface PABCBa = \ pq' .
-

+

1+

Consequently,

sin a" . sin 6" . sin {a'— b')

sin (a' + a'') . sin [b' + b")

sin b" .sin c''. sin {b' ~ c')

sin (6' + h") . sin (c' + IF)

sin c''. sin d''. sin (<.•' — rf')

sin (</ + </') . sin {d' + d")

sin d' . sin d"

sm{d' + d")

The same method manifestly applies to polygons of any
number of sides : and all the terms except the last are so per-

fectly symmetrical, while that last term is of so obvious a

form, that there cannot be the least difficulty in extending
the formula to any polygon whatever. '

PROBLEM
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PROBLEM II.

Given, in a Polygon, All the Sides and Angles, except three;
to find the Unknown Parts.

This problem may be divided into three general cases, as

shown at the beginning of this chapter : but the analytical

solution of all of them depends on the same principles ; and
these are analogous to those pursued in the analytical iiivesti-

gations of plane trigonometry. In polygonometry, as well as

trigonometry, when three unknown quantitiesareto be found,

it must be by means of three independent equations, involv-

ing the known and unknown parts. These equations may be

deduced from either theorem 1, or 3, as may be most suited

to the case in hand j and then the unknown parts may each

be found by the usuiil rules of extermination.

For an example, let it be supposed that

in an irregular hexagon abcdef, there

are given all the sides except ab, bc, and

all the angles except B ; to determine

those three quantities.

The angle B is evidently equal to (2n— 4) right angles —
(a 4- c + D + E + f) ; 71 being the number of sides, and the

angles being here supposed the interior ones.

Let AB — .2r, BC rr 1/ : then, by th. 1,

X := y . cos B + DC . COS AB '* CD + DE . COS AB ^ ED
+ EF . COS AB ^ EF 4- AF . COS AB '^ AF j

y z=. X , COS B + AF . COS BC '^ AF + FE . COS BC ^ FE

+ DE . COS BC '^ DE + DC . COS BC " CD.

In the first of the above equations, let the sum of all the

terms after y . cos b, be denoted b)' c ; and in the second the

sum of all those which fall after x . cos B, by d\ both sums

being manifestly constituted of known termis : and let the

known coefficients of x and y be tn and n respectively. Then
will the preceding equations become

X = ny •\- c . . . .y — mx •{ d.

Substituting for y, in the first of the two latter equations, its

value in the second, we obtain .r = 7jmx- -j- 7id + c. Whence
there will readily be found

nd+c , mc+d
X = , and J/

=
.

1 —mn -^
1 —mn

Thus AB and ec are determined. Like expressions will serve

for the determination of any other two sides, whether conti-

guous or not : the coefficients of x zndy being designated by
different letters for that express purpose ; which would have

been otherwise unnecessary in the solution of the individual

case proposed.

Remark.
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Remark. Though the algebraic investigations commonly
lead to results which are apparently simple, yet they are often,

especially in polygons of many sides, inferior in practice to

the methods suggested by subdividing the figures. The fol-

lowing examples are added for the purpose of explaining those

methods : the operations however are merely indicated j the

detail being omitted to save room.

EXAMPLES.

JE.r. 1. In a hexagon abcdef, all the sides except AF, and
all the angles except a and f, are known. Required the un-
known parts. Suppose we have

AB = 1284. Ext. ang. Whence
BC = n82 B =: 32° B+C = 8(y
CD = 2400 C = 4S'' B + C + D =132°
DE = 2700 D=52° B+C + D+E = 198°

EF=2860 E=66° A + F =162°.

Then, by cor 3 th. 2, tan baf =
BC .sin B +CD sin (b + c) + DF. .sill (b+ c + d)+ EF . sin (b + c + d + r)

AB + BC . Cos B + CD. COS (B+ C) + DE . COS (B+ C+ D) + EF . COS(B + C + D + E)

BC . sin 32°+ CD . sin 80°+ de sin 132°+ ef . sin 198°

AB-^BC . cos 3^° + CD . cos 80" + DE . cos 132°+ ef . cos I'Jif*

BC . sin 32° + CD . sin SO°+de . sin 48°— kf . sin 18°

AB + B4; . cos 32° + CD . (JOS 80°— DE • C0S48''— iiF . cos 18".

Whence baf is found 106°3r38"5 and the other angle afe=
9 1°28'2£'''. So that the exterior angles a and F are 73°28'22",

and SS^Sl'SS" respectively: all the exterior angles making 4
right angles, as they ought to do. Then, all the angles being
known, the side af is found by th. 1 = 462 To.

If one of the angles had been a re-entering one, it would
have made no other difference in the computation than what
would arise from its being considered as subtractive.

Ex. 2. In a hexagon abcdef, all the sides except AF,and
all the angles except c and d, are known : viz,

AB=2400 Ex. Ang.

BC = 2700 A=54*
CD= 3200 B= 62°

DE= 3500 E= 64'

EF

AB .sin A . 1 • • / , V

+ BC.sin(A+B) U}DE.sm(E+ F)

We shall have, by th. 2 cor 1,

DE.'sIni

+ EF . sin F.

r — AB . sin

Therefore, cd . sin (1 l6°+c)

sin (A-f b)

•3750 F= 72- +CD.sin(A+B + c

— AB . sin 54*

— BC . sin 1 16

+ DE. sin ISG'^

+ EF . sin 72*

n iifio J. ~J 149<'23'26"/
Ur, 116 i-c_<_^ 33''36'34".

The
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The second of these will give for c, a re-entering angle ^

the first will give exterior angle c= 33''23'26", and then will

O =; 14°36'34". Lastly,
•— AB . COS 54"

-f- Bc . cos 64"

AF = <{ -i- CD . COS 30"36'34" ^ = 3885-905.
-j- DE . COS 44°

I

I- EF. cos 72°. J
£x. 3. In a hexagon abcdef, are known, all the sides ex-

cept AF, and all the angles except b and e ; to find the rest.

Given ab = 1200 Exterior angles a = 64°

BC = 1500

CD = 1600 c = 72°

DE= 1800 D =: 75°

EF = 2000
F = 84°.

Suppose the diagonal be drawn, dividing the figure into two
trapeziums. Then, in the trapezium bcde, the sides except

BE, and the angles except b and e, will be known •, and these

may be determined as in exam. 1 . Again, in the trapezium
ABEF, there will be known the sides except af, and the

angles except the adjacent ones b and e. Hence, first for

BCDE : (cor. 3 th. 2).

CD . sin C + DE . sin (C+ d)
tan CBE = •—

, =:
BC + CD . COS C + DE . COS (C + d)

CD . sin 72° + OZ . sin 147" cd . sin 72" + de . sin 33°

BC + CD . cos 72° + DE . cos 147" BC + CD . cos 72"— DE . cos 33<**

"Whence cbe z: 79°2'1"
5 and therefore deb = 67°o7'59''

r BC . cos 79° 2' 1"!

Then eb = •} + cd . cos 7^ 2' 1"
[ =

t + DE.cos 67°57'59"J

254S-581.

Secondly, in the trapezium abef,

ab . sin a-1- be . sin (a + b) n ef . sin f : whence
/ ,

> EF . sin F — AB . sill B . C 20"55'54",
s;n(A + B)= = sm ^15904,6":
Taking the lower of these, to avoid re-entering angles, we

have B (exterior ang.) = 95°4'6"; ABEir84°55'54"; feb =
G3°4'6": therefore AEC=,'163°57'55"i and fed = l31"2'5":

and consequently the exterior angles at b and e are 16"2'5"

and 4S°57'55" respectively.

Lastly, AF= — AB . cos a — be . cos (a+ b)— ef . cos F~ —
AB . cos Gi-'-f BE .COS 20°55'54"-EF . cos 84°— 1645-292.

Note. The preceding three examples comprehend all the
varieties which can occur in Polygonometry,when all the sides

except one, and all the angles but two, are known. The un-

known angles may bc about the unknown side ; or they may
be
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be adjacent to each other, though distant from the unknovvn

side ; and they may be remote from each other, as well as

from the unknown side.

Ex. 4. In a hexagon abcdef, are known all the angles,

and all the sides except af and CD : to find those sides.

Given ab = 2200 Ext. Ang. a = 96°

BC = 2400 B = 54"*

c = 20°

DE = 4800 D = 24°

EF = 5200 E = 18°

F = 148°.

Here, reasoning from the principle of cor. th. 2, we have

AB . sin 96°

+ BC . fill 1 50"

+ CD. sin 170°

Whence 5 de • sin 14° . cosec 10" - ab . sin 84° . cosec lO"? ^nnAK so
CD =

i + EF . sin 320 . cosec 10« - bc . sin 30'^ . cosec ICy -J"45'53.

And 5 i>E . sin 24" . cosec 10° — cb . sin 20'* ? _ i4q7/,.qo
AF = I + EF . sin 42" . cosec IQO - ba . sin 74"

J

~

Ex. 5. In the nonagon abcdefghi, all the sides are known,
and all the angles except a, d, g : it is required to find those

angles.

Given ab — 2400 fg = 3800 Ext. Ang. B = 40"»

C 1/-/^o or AB. sin 84°) C • , ««
= ^

i>E.s.nl66° +Be.sin30'f = ) °^•^'" *°

^
+EF.s.al48°. ^.cD.siulO°5 ^+E>f.sin32°

BC = 2700
CD = 2800
DE = 3200
EF = 3500

GH = 4000
HI = 4200
lA = 4500.

Suppose diagonals drawn to join the

unknown angles, and dividing the po-

lygon into three trapeziums and a tri-

angle ; as in the marginal figure. Then,
1st. In the trapezium A BCD, where

AD and the angles about it are unknown

;

we have (cor. 3 th. 2)
BC. sin B + cD.sin(B + c)

I A.

• sin 40" + CD .sin 72"

AB + BC .cosW + CD .cos72*'

32°29'18".

tanBADrr-
AB + BC . COS B+ CD . COS(l!+ c)

Whence bad = 39" 30'42 ", cda =

AB . cos 39°

And AD = -i + BC . cos

+ CD . cos 3'.

2dly. In the quadrilateral defg, where dG and the angles

about it are unknown j we have

EF . sin36°+ FG . sin 81"

r AB .cos 39°30'42"')

-{ + EG . cos 29 18 >

t + CD . cos 32 29 18 J

6913*292.

tanEDG __ EF . sin E + FG . sin (e + f)

'~'l>E+ EF.CWSE + FG .COS (E + t) DE + £F. COS 36" + FG .COS 81"*

Whence
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Whence edG = 41° 14' 53", fgd = 39° 45' 7".

r DE . cos 4I°14'53'"J
And DG = •} + EF . cos 5°14'53"

[• = 8812-803.

(. + FG . cos 39°45' 7"J

3dly. In the trapezium ghia, an exactlvsimllar process gives

HGA = SO** 46' 53", IAC = 47° 13' 7", and AG = 9780-591.

4thly. In the triangle adg, the three sides are now known,
to find the angles: viz, dag = 60° 53' 26", agd = 43' 15' 54",

ADG = 75° 50' 40". Hence there results, lastly,

lAB =47'13' 7"+60°53'26"+39°30'42"=147°37'15",
CDE = 32°29'l8"+ 70°50'40"+4r 14'53"= 149° 34' 5l",

FGH = 39^45' 7" +43° 15' 54" + 50° 46' 53"= 1 33° 47' 54".

Consequently, the required exterior angles are A = 32°22'45",

D =: 30" 25' 9", G = 46° 12' 6".

Ex. 6. Required the area of the hexagon in ex. 1

.

Ans. 16530191.

E.v. 7. In a quadrilateral abcd, are given ab = 24, bc = 30,

CD = 34 ; angle ABC =z 92° 18', BCD = 97°23'. Required the

side AD, and the area.

Ex. 8. In prob. 1, suppose pa= 2538 links, and the angles

as below
J what is the area of the field abcdqp.''

APQ= 89°14', BPa= 68°ll', CPQ = 36°24', DPQ= 19°57';

AQP=25°18', BciP= 69°24', CQP = 94° 6', DaP=121°l8'.

CHAPTER VII.

PROBLEMS RELATIVE TO THE DIVISION OF FIELDS OP
OTHER SURFACES.

PROBLEM I.

To Divide a Triangle into Two Parts having a Given Ratio,

971 : 71.

1st. By a line drawn from one angle

of the triangle.

Make AD : ab : : 7?i : w^ + ?i ; draw cd.

So shall ADC, BDC, be the parts required. j^—jj

Here, evidently, ad= -— ab,db= —— ab." m+n ' m + n

2dly,
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So shall

SJdly. By a line parallel to one of the sides of the triangle.

Let ABC be the given triangle, to be
divided into two parts, in the ratio of vi

io 71, by a line parallel to the base ab.
Make CE to eg as m to u : erect ED per-

pendicularly to CB, till it meet the semi-

circle described on cb, as a diameter, in

i). Make cf ri: cd : and draw through F, GF
jj
AB.

GF divide the triangle ABC in the given ratio.

For, CE : CB = ---*
: : cd'( =::cf") : CB". But CE : eb : : rh : n,

CE

or CE : CB : : in : m + n, by the construction : therefore,-

c'V^ : cs"- : : m : m + 7i. And since A cgf : A cab : : cf' : cV j'

it follows that cgf : cab : : w : m -\- ?i, as required,

Coynpiitaiioji. Smce ch^ : cf^ : ; vi + ii : ??/, therefore,

[m + ?i)cF- = 111 . Cb^; whence cfv'(7« + n) = cB\^m^ or

CF = CBV -. In like manner, cg = CAV -

—

.'

3dly. By a line parallel to a given line.

Let HI be the line parallel to which
a line is to be drawn, so as to divide

the triangle ABC in the ratio of m
to V.

By case 2d draw Gf parallel to ab,

so as to divide abc in the given ratio.

Through f draw fk parallel to hi.

On CE as a diameter describe a semi-

circle j draw GD perp. to Ac, to cut

ihe semicircle in D. Makecp=:cD:
through p, parallel to ef, draw pa, the line required.

The demonstration of this follows at once from case 2; be-

cause it is only to divide fce, by a line parallel to fe, into two'

triangles having the ratio of ice to fcg, that is, of CE to CG.

Computation, cg and cf being computed, as in ca^e 1, the'

distances CH, ci being given, and cp being to CQ^as cl? to ci

:

the triangles cgf, gpq, also having a common vertical snglcj'

are to each other, as cG . cf to cq . cp. These products there-

fore are equal j nnd since the factors of the former are know^ri*

the latter product is known. We have hence given the ratic

of the two lines CP( = x) to CQ^( =3/) as ch to ci ; say, as p
to q J and their product =r cf . CG, say = ab : to find x and j/>

Here we find x - ^'^^ -- /"'''

/ CF . CG .

CP =: v^
CH /CY . CG . CI

That

N. B. If the line of division were to be perpeiidieular to

one of the sides, as to C a, tlie construction would be similar;

. 'Vol. in> M ep
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CP would be a geometrical mean between cA and -c^.^

being the foot of the perpendicular from b upon Ac.

4thly. By a line drawn through a given point p.

jn

By any of the former cases draw Im (flsr. 1 ) to divide the
triangle ABC, in the given ratio of m to n : bisect c/ in r, and
through r and m let pass the sides of the rhomboid crs7n.

Make ca = pc, which is given, because the point P is given
in position: make cd a fourth proportional to ca, cr, cm;
that is, make ca : cr : : on : ca ; and let fl, and d, be two
angles of the rhoniboid cabdy figs. 1 and 2. pc, in figure 2,

being drawn parallel to cc, describe on ed as a diameter the

semicircle cjdy on which set off cj' zz ce zz av : then set off

du or dM' on CA equal to dj", and through p and M, p and m',

draw the lines lm, l'm', either of which will divide the tri-

angle in the given ratio.—The construction is given in 2 figs,

merely to avoid complexness in the diagrams.

The limitations are obvious from the construction: for, the

point L must fall between b and c, and the point m between
A and c ; <fp must also be less than p<^, otherwise ej' cannot

be applied to the semicircle on ed.

Demon. Because cr zz -Icl, the rhomboid crsm = triangle

chiiy and because ca : cr : : cm :o/,we have ca . cd= znt. cr,

therefore rhomboid cahd = rhomboid crsm = triangle elm.

By reason of the parallels cb, bdy and cA, ab, the triangles

ALP, f/GM, ^GP, are similar, and are to each other as the

squares of their homologous sides ap, ^/m, bp : now cd^ = t^*

•\- df'-^ by construction; and ed = vb, cf = av, df = du;
therefore ?b'- = ap'- + fi^'i or, the ti-iangle p/JG taken away
from the rhomboid, is equal to the sum of the triangles apl,

duGy added to the part caPGd: consequently clm = cabdj as

required. By a like process, it may be shown that al'p, dc'u',

tbc'y are similar, and (ilp + doM' = vbo j whence pbdu =
ui!?i and Cl'm' =; cabds as required.

Lorn *
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m . cu

Computation, c/, cni^ being known, as well as c<?, «p, or

ce, ePf cr = ^c/, is known; and hence cd may be found by
the proportion ca : cr : : on : C(L Then cd — Cf^ = ed, and

y/ ed' — ef"-— \/ ed'-— av^ =. df =. dy\ = dm'. Thus cm is

determmed. Then we have —' = cl.
C»I

N. B. When the point is in one of the sides, as at M ; then

make cl . cm • (m \-?i) = ca . cb . wj, or, CL : ca
(m+ w)cM, and the thing is done.

5thly. By the shortest Hne possible.

Draw any line pq dividing the triangle In

the given ratio, and so that the summit of the

triangle cpq shall be c the viosl acute of the

three angles of the triangle. Make cm = CN,

a geometrical mean proportional between CP

and CQ^; so shall mn be the shortest line pos-

sible dividing the triangle in the given ratio.

—The computation is evident.

De)nons. Suppose mn to be the shortest

line cutting off the given triangle cmn, and
CG _J_ MN, MN = MG + GN = CG . COt M +
CG . cot N = €G(cot M + COt n). But, COt M +

cos M . COS N sin(M + N) . ,,
cot N = 1- =—-i^ -. And(equa.

sin N sin N sin M. sin N ^ *

XVIII, ch. iii) sin M . sin N = i^ cos (m — n) —

|cos(m — n)4-|;Cos c. Theref. mn=cg .

-

A B
iCOS(M + N)~
sin (m + n)

cos (m — N) + ijus c J

which expression is a minimum when its denominator is a

maximum ; that is, when cos (m — N) is the greatest possible,

which is manifestly when M — n =: o, or M = N, or when the

triangle cmn is isosceles. That the isosceles triangle must
have the most acute angle for its summ.it, is evident from the

consideration, that since 2 A cmn = cg , mn, mn vai-ies in-

versely as CG ; and consequently mn Is shortest when cg is

longest, that is, when the angle c is the most acute.

N. B. A very simple and elegant demonstration to this

case is given in Simpson's Geometry : vide the book on Max.
and Min. See also another demonstration at case 2d prob.

6th, below.

PROBLEM II.

To Divide a Triangle Into Three Parts, having the Ratio of

the quantities vi, n, p.

1st. By lines drawn from one angle of the triangle to the

opposite side.

M 2 Divide
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Divide the side AB, opposite the angle c

from whence the lines are to proceed, in the

given ratio at D, E
; join CD, CE ; and ACfi,

DCE, ECU, are the three triangles required. _, -

The demonstration is manifest ; as is also, the

computation.

If it be wished that the lines of division be the shortest tke

nature of the case will admit of, let them be drawn from the

most obtuse angle, to the opposite or longest side.

2dly. By lines parallel to one of the sides of the triangle.

Make CD : dh : hb : : 7ti : n : p. Erect j,-

DE, HI, perpendicularly to CB, till they meet /\^-^!^!\
the semicircle described on the diameter / i)\" / '.'.)?.

CB, in E and i. Make cf = ce, and ck = ^y fv • /
]

CI. Draw GF through f, and lk through K, H ^^ /
parallel to AB ; so shall the lines GF and LK, J^

^
divide the triangle abc as required.

The demonstration and computation will be similar to those

in the second case of prob. 1.

Sdly. By lines drawn from a given point on one of the

sides.

c c

Fig. I. c//M ^-2.

A '^ y r b D

Let P (fig. 1) be the given point, a and h the points which
divide the side ab in the given ratio' of ?w, w, /? : the point ?

falling between a and h. Join pe, parallel to which drawer,
hd, to meet the sides AC, BC, in the points e and d : join Pt,

?i/, so shall the lines cp, pd, divide the triangle in the given

ratio.

In fig. 2, where p falls nearer one of the extremities of ab
than both a and b, the construction is essentially the same

;

the sole difference in the result is, that the points c, and d.

Both fall on one side Ac of the triangle.

Demon. The lines ca, cby divide the triangle into the given

ratio, by case I'st. But by reason of the parallel lines «c, pc,

bdy A ace = A fltp, and A bdc = bdf. Therefore, in fig. !-,

Auc -\-act = Aac -f- ace, that is, acp = Aac : and sbd + bdf
= Bbd -}- bdc, that is, £^F — B^. Consequently, the re-

mainder cepd = cab.—In fig. 2, acp = Aac, and Adp = Acb-;

therefore cpd = acp j and ACB — Adf = acb — AC^, that is,

CBvd = ciib.

Computation. The perpendiculars eg, cd being demitted.
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A ACT : A ACB : : m : m+ w+/) : : ap . c^ : ab . cd. Therefore

{m+n-\-p) AV .c^—Vi.A^. CD, and ca-— '^
.
•*°- "

^
fpj^g

jj^^^

cg^ being thus known, we soon find Ac; for CD z AC :: eg i

AC . CO- TO . AB . AC Till- • TAC rr: —
;^— . Indeed this expression may be

CD (m + n+p) AP * •'

deduced more simply; for, since ACB : ACp : : Ac . AB :

Ac.AP : : 7Ji-{-?i-\-p : w, we have {>/i-\-n-{-p) AC.AP— 772. ab .AC,
yjl ABAC • •

and AC rr •:

—

' —
. By a hke process is obtained, in

iig. 1, B(/

(m + n+p) AP*

p . AB . BC
; and, in fig. 2, A^ r:';

,()7) + 72) AB . AC

(w + n+yt)} PB ' "* ' ^' ~' "" '{m + n+p) ap"

4thly. By lines drawn from a given point p within the

Iriangle.

c c

A y
Co77sl. Through ? and c draw the Hne cpjo, and let the

triangle be divided into the given ratio by Ymes pc,pd, drawn
from p to intersect AC, EC, or either of them ; according to

the method described in case 3 of this problem. Through P

draw PC, P(/, and respectively parallel to them, from p draw
the lines puy pu : join pm, pn ; so shall these hnes with pp^

divide the triangle in the given ratio.

Demon. The triangles cpm, cp;3, are manifestly equal, as

are also ^/pnt, dpp-, therefore cpm 3: cpc, and cpn :zz cpd

;

whence also, in fig. 1, cnpm — cdpCy and, in fig. 2, cb/)Pn :r

CBpd.

Comput. Since cp . cn rz cp . cc?, we have cn — ^ '

^

In like manner cm

CP

cp .cc

Remark. It will generally be best to contrive that the

smallest share of the triangle shall be laid off nearest the ver-

tex c of the triangle, in order to ensure the possibility of the

construction. Even this precaution however may sometimes

fail, of ensuring the construction by the method above given

:

when this happens, proceed thus :

By case 1, draw the lines c(/, cc, from
the vertex c to the opposite side ab, to di-

vide the triangle in the given ratio. Upon
AB set off any where mn, so that mn : ab :

:

Fp (the perp. from p on ab) : cp, the alti-

titude of the triangle. If mp and pn are to-

gether
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gether to be the least possiblcj tlien set off-|MN on each side

the point p : so will the triangle MfN be isosceles, and its

perimeter (with the given base and area) a minimum.

othly. By lines, ona of which is drawnyro77^ a given angle

to a given point, which is also the point of concourse of the

other ty/o lines.

A <»

Const, By case 1st draw the lines Cf/, c^, dividing the

triangle in the given ratio, and so that the smaller portions

shall lie nearest the angles A and B (unless the conditions of

the division require it to be otherwise). From p and a demit
upon AC the perpendiculars vp, ac\ and from P and b, on
BC, the perpendiculars vq, bd. Make cm : CA : : rtf : vp, and

Cii : Q.Q : : bd : vq. Draw pm, pn, which, with cp, will divide

the triangle as required.

When the perpendicular from b or from a, upon bc or AC,
is longer than the corresponding perpendicular from p, the

point N or M will fall furtJ:ier from c than B or a does. Sup-
pose it to be N : then make n'c : en : : ne : ep, and draw pn'

for the line of division.

The demonstration of all this is too obvious to need trac-

ing here.

Comput. The perp. ca r= Aa .sin A; and c/m ~ —-—

.

bd zz sb . sin b; and cn =z —'—

,

Pq

6thly. By lines, one of which falls from the given point of
concourse of all three, upon a given side, in a given angle.

Suppose the given angle to be a right

angle, and pf the given perpendicular : q
which will simplify the operation, though - /K
the principles of construction will be the ir'/ M^
same. ,,..j<f/[\\rf

Const. Let Cff, c/j, divide the triangle ?S'A «:ftiNB

in the given ratio. Make/N :CB::bd: 'p/i

andyk : CA : : ar : vf', and draw pn, pm, thus forming two
triangles lyk, p/ivi, equal to cbii, cua respectively. If N fall

between y and b, and M between A and_/i this construction
manifestly effects the division. But if one of the points, sup-
pose M, fails beyond the corresponding point A, the line PM

intersecting
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intersecting Ac in g : then make m'^ : e& :: eu : ev, and draw

VU-. so shall p/'j ?m', pn, divide the triangle as required.

Comput. Here ca and bd are found as in case 5th ; and

hence/N= ^^^ ; and/M zr^^^ Then pm= ^/ {uf^ +/pO»

and — rrsiiiM. Also 180°— (m + a)= m^a. ThensinM^A:
PM \ • /

sinM : sin Aoc M\(=:Mf-~Af) : At : Me. Again p^=PM — M(r;

and lastly u'e — —'-^.

Here also the demonstration is manifest.

7thly. By lines drawn from the angles to meet in a deter-

minate point.

Construe, On one of the sides, as AC, set 9
off AD, so that AD : AC ; : m : m + n -{-p. ^^//\
And on any other, as AB, set off BE, so that I)/-^---v-
BE : BC : : n : vi -i- n + p- Through D draw yx^>v\
DG parallel to ab; and through e, eh parallel A E\ B
to BC ; to their point of intersection i draw the Hues AI, Bi, CI,

which will divide the triangle A Be into the portions required.

Demon. Any triangle whose base is ab, and whose vertex

falls in DG parallel to it, will manifestly be to AEC, as ad to

AC, or as in to ?72 4- 72 -{- p : so also, any triangle whose base

is BC, and whose vertex falls in eh parallel to it, will be to

ABC, as BE to BA, that is, as n to m + n -\- p.

Thus we have aib : acb : : m : in + n -{- p,
and . . . Bic : acb : : ?t : m ~\- n -\- p%
therefore . aib : Bic :: m : n.

And the first two proportions give, by composition,

AIB -r BIG : ACB : : m -f n : m ^ 7i {- p ; and by division,

ACB — (aib + Bic) : ACB : : m -\- Ti -\- p — {vi -J- 7i) : ?m -f w + /?,

or Aic : ACB : : p : 771 -{• 7i -{- p, consequently AIB : Bic : Aic

oc 7)1 : 71 : p.Cw . AB m . tc ,

o)7iput. BE = Gi rz • : BG = ; angle BGE
??i + w + /) m+ n-r p

^

= 2 right angles — b. Hence, in the triangle bgi, there are

known two sides and the included angle, to find the third

side Bi.

Rcmaj'k. When ?;z = n = p, the construction

becomes simpler. Thus : from the vertex draw
CD to bisect ab ; and from B draw BE in like

manner to the middle of ac : the point of inter- a i>

section i of the lines CD, be, will be the point sought.

For, on be and be produced, demit, from the angles c and

A, the perpendiculars ci, AK : then the triangles cei, aek,

are equal in all respects, because ae = ce, icab = ice, and
the
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the angles at E are equal. Hence ak = ci. But these are

the perpendicular altitudes of the triangles bfc, hPA, whicli
have the common base Bp. Consequently those two triangles

are equal in area. In a similar nrauner it may be pro\ cd, thai:

APC — APB or CPB : therefore these three triangles are equal
to each other, and the lines pa, pp, pc, trisect the A abc.

PROBLEM HI.

To Divide a Triangle into Four Parts, having the Proportion

of the Quantities vi, n, p, y.

This, like the former problems, might be divided into se-

veral cases, the consideration of all which would draw us to

a very great length, and which is in great measure unneces-

sary, because the method will in general be suggested imme-
diately on contemplating the method of proceeding in the

analogous case of the preceding problem. We shall therefore

only take one case, namely, that in which the lines of divisJQij

must all be drawn from a given point in one of the sides.

Let f be the given point in the side AB.

Let the points /, 7n, n, divide the base AB
in the given prcportion ; so will the lines c/,

C7}if c», divide th^ surface of the triangle in

J:he same proportion. Join CP, and parallel ATt'^''^'^

to it draw, from I, ni, «, the lines /l, mM,
t7N, to cut the other twp sides of the triangle in l, m, n.

Draw PL, PM, PN, which will divide the triangle as required.

The demonstration is too obvious to need, tracing through-

out : for the triangles l/p, L'^c, having the same base U, and
lying between the same two parallels l/, cp, are equal ; to each

of these adding the triangle AiJ, there results alp rr acL
And in like manner the truth of the whole construction may
be shown.
The com.putation may be conducted after the manner of

that ia case 3d prob. £.

problem IV.

To Divide a Quadrilateral into Two Parts having a Given
Ratio, 7fi. : n.

1st. By a iine drawn from any point in the perimeter of
the figure.

Construe. From p draw lines pa, pb,

to the opposite angles a, b. Through d
draw DF parallel to P/^, to meet ba pro-
duced in F : and through c draw CE pa-

_ ^
iallel to pa to meet ad produced in E. S' A r- v, i<

Divide



DIVISION OF SURFACES. iG9

Divide FE in M, in the given ratio of w to n: jc'n P, >'

shall the line pm divide the quadrilateral as required.

Demon. That the triangle fpe is equal to the quadrangle

ABc£>, may be shown by the same process as is used to demon-
strate the construction ofprob. 36, Geometry, of which, ini

fact, this is only a modification. And the line p\; evidently

divides fpe in the given ratio. But fpm= adpm, and epm=
"BCPM : therefore pm divides the quadrangle also in the given

ratio.

Remark 1. If the line pm cut either of the sides ad, bc,

then its position must he changed by a process sirnilar to that

described in the 5th and 6th cases of the last problem.

. Remark 2. The quadrilateral may be divided into three,

four, or more parts, by a similar method, being subject how^
ever to the restriction mentioned in the preceding remark.

Remarks. The same method may obviously be used when
the given point p is in one of the angles of the figure.

Comput. Suppose i to be the point of intersection of the

sides DC and ab, produced ; and let the part of the quadrila.?

teral hid off towards i, be to the other, as n to m. Then we

have IM rz -^^ . As to the distances Di, Ai, (since
(m + ?i) IP ^

the angles at A and D, and consequently that at I, are known),
they are easily found from the proportionality of the sides of

triangles to the sines of their opposite angles.

2dly. By a line drawn parallel to a given line.

Construe. Produce dc, a b, till

they meet, as at I. Join db, pa- »^
ral lei towhich draw CF. Divide A

F

/^^^?^^^'»v^C
in the given ratio in H. Through /• 'f\""Mv'«-..

D draw DG parallel to the given /; /
'•''•.) ''••> '^'•••..

line. Make IP a mean proportional -A- G P ii B F*"* ^

between IH, IG ; through P draw
PM parallel to gd : so shall PM divide the quadrilateral a BCD
as required.

Demon. It is evident, from the transformation of figures,

so often resorted to in these problems, that the triangle aep
=. quadrilateral abcd (th. 3G Geom.) : and that dh divides

the triangle Adf in the given ratio, is evident from prob. I

case 1 . We have only then to demonstrate that the triangle

IHD is equal to the triangle lpm, for in ihat case hdf will

manifestly be equal to ecmp. Now, by construction, IH :

IP : ; IP : IG : : (by the parallels) IM : id ; whence, by making
the products of the means and extremes equal, we have

id , III = IP . iMj but when the products of the sides about

the
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the equal angles of two triangles having a common angle are

equal, those triangles arc equal; therefore A ihd rr A IPM.

Q. E. D.

Cowput. In the triangles adi, adg, are given all the angles,

and the side AD-, whence ai, ag, di, and ic, =zi>i — dc, be-

come known. In the triangle IFC, all the angles and the side

jc are known ; whence IF becomes known, as well as fh,

since ah : he : : ?yi : ?2. Lastly, ip =z V(ih . ig), and iG :

ID : : IP : IM.

Cor. 1. When the line of division PM is to be perpendicu-

lar to a side, or parallel to a given side ; we have only to draw

DG accordingly : so that those two cases are included in this.

Cor. 2. When the line pm is to be the shortest possible, it

must cut off an isosceles triangle towards the acutest angle ;

and in that case lo must evidently be equal to id.

3dly. By a line drawn through a given point.

The method v/ill be the same as that to case 4th prob. 1,

and therefore need not be repeated here.

Scholium. If a quadrilateral were to be divided into four

parts in a given proportion,/;?, ??, p, q : we must first divide

it into two parts having the ratio of m + '^ to yj + ^ ; and

then each of the quadrangles so formed into their respective

ratios, of m to «, and p to q.

PROBLEM V.

To Divide a Pentagon into Two Parts having a Given

Ratio, from a Given Point in one of the Sides.

Reduce the pentagon to a triangle by prob. 37, Geometry,

and divide this triangle in the given ratio by case 1 prob. 1.

PROBLEM VI.

To Divide ani/ Polygon into Tv/o Parts having a Given

Ratio.

1st. From a given point in the perimeter of the polygon.

Construe. Join any two opposite

angles a, d, of the polygon, by the line A^lj^
AD. Reduce the part ai^cd into an /

equivalent triangle nps, whose vertex ..-y

shall be the given point p, and base ad k "[a~

produced : an operation which may be qL

performed at once, if the portion A BCD >

be quadrangular ; or by several opera-

tions (as from 8 sides to 6, from 6 to 4, cx-c,") if the sides be
more than four. Divide the triangle nps into two parts hav-

ing the given ratio, by the line ph. In Uke manner, reduce

ADEFGA
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ADEFGA into an equivalent triangle having H for its vertex,

and FE produced for its base ; and divide tliis triangle into

the given ratio by a line from H, as HK. The compound line

PKK will manifestly divide the whole polygon into two parts

having the given ratio. To reduce this to a right line, join

PK, and through H draw hm parallel to it ;
join PM ; so will

the right line pm divide the polygon as required, provided M
fall between f and E. If it do not, the reduction may be com-

pleted by the process described in cases 5th and 6th prob. 2d.

All this is too evident to need demonstration.

Remark. There is a direcl method of s(»lving this pro-

blem, without subdividing the figure ; but as it requires the

computation of the area, it is not given here.

2dly. By the shortest line possible.

Construe. From any point p',

in one of those two sides of the

polygon which, when produced,

meet in the most acute angle i,

draw a line p m', to the other

of those sides (ef), dividing the

polygon in tiie given ratio. Find

the points p and IM, so that ip or iM shall be a mean propor-

tional between ip', im' ; then will pm be the line of division

required.

The demonstration of this is the same as has been already

given, at case 5 prob. 1. Those, however, who wish for a

proof, inciependent of the arithmetic of sines, will not be dis-

pleased to have the additional demonstration below.

The shortest line which, with two other lines given in po-

sition, includes a given area, will minke equal angles with those

two lines, or with the segmients of them it cuts off from an

isosceles triangle.

Let the two triangles abc, aef, having the common angle

A, be equal in surface, and let the former triangle be isos-

celes, or h !ve ab — Ac ; then is EC shorter than ef.

First, the oblique base ef cannot pass

through D, the middle point of bc, as in

the annexed figure, lor, drawing cG
parallel to ab, to meet ef produced in

G. riien the tv/o triangles dbe, dcg
are identical, or mutually equal in all

respects. Consequently the triang'e

DCF is less than dee, and therefore

ABC less than aef.

EF must therefore cut uc in some point h between B and
D, and cutting the perp. ad in some point i above d, as in the

2d iig.
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2d fig. Upon EF (produced If necessary)

deiuit the perp. AK. Then, in the right

angled A A IK, the perp. ak is less than

the hypothenuse Ai, and therefore much
more less than the other perp. ad. But,

of equal triangles, that which has the

greatest perpendicular, has the least base.

Therefore the base bc is less than the base ef. q. e. d.

This series of problems might have been extended much
further ; but the preceding will furnish a sufficient variety,

to suggest to the student the best method to be adopted in

almost any other case that may occur. The following prac-

tical exanples are subjoined by way of exercise.

Ex. 1. A triangular field, whose sides are 20, 18, and 16

chains, is to have a piece of 4 acres in content fenced off from

it, by a right line drawn from the most obtuse angle to the

opposite side. Required the length of the dividing fine, and

it^ distance from either extremity of the line on which it

falls?

Ea'. 2. The three sides of a triangle are 5, 1 2, and 13. If

two'thirds of this triangle be cut off by a line drawn parallel

to the longest side, it is required to find the length of the

dividing line, and the distance of Its two extremities from the

extremities of the longest side.

Ex'. 3. It is required to find the length and position of

the shortest possible line, which shall divide, into two equal

parts, a triangle whose sides are 2.5, 24, and 7 respectively.

Ex. 4. The sides of a triangle are 6, 8, and 10 : it is re-

quired to cut off nine-sixteenths of it, by a line that shall pass

through the centre of its inscribed circle.

Ex. 5. Two sides of a triangle, which Include an angle of

70°, are 14 and 17 respectively. It is required to divide it

into three equal parts, by lines drawn parallel to its longest

side.

Ex. 6. The base of a triangle Is 11
2
'6 5, the vertical angle

5T51', and the difference of the sides about that angle is S.

It is to be divided into three equal parts, by lines drav/n from

the angles to meet in a point within the triangle. The lengths

of those lines are required.

Ex. 7. The legs of a right-angled triangle are 28 and 45.

Required the lengths of lines draAvn from the middle of the

hvpothenuse, to divide it into four equal parts.
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E.v. 8. The length and breadth of a rectangle are 1 5 and

9. Tt is proposed to cut ofF one-fifth of it, by a line which
shall be (h-awn from a point on the longest side at the di-

stance of 4 from a corner.

Ex. 9. A regular hexagon, each of whose sides is \2, is

to be divided into four equal parts, by two equal lines ; both-

passing through the centre of the figure. What is the length

of those lines when a minimum ?

Ex. !0. The three sides of a triangle are 5, 6, and 7- How
may it be divided into four equal parts, by two lir;es v.hich

shall cut each other perpendicularly ?

*=jj,* The student will find that some of these examples

will admit of two answers.

CHAPTER VIII.

ON THE NATURE AND SOLUTION OF EQUATIONS IN
GENERAL.

1. In order to investigate the general properties of the

higher equations, let there be assumed between an unknown
quantity x, and given quantities (/, b, c, d, an equation cozi-*

stituted of the continued product of uniform factors : thus
{x — a) X {x - b) X (x ~ c) X {x — d) = 0.

This, by performing the multiplications, and arranging tho

final product according to the powers or dimensions of x,

becomes
x'^—a-] x^ h ob'^ x'^—'abc-\x-\-al>cd~0. . . . (A)
~b\ -]- ac\ -abd\
— c\ + ad \ — acd

[

-d] + bcf -bed]

-T f}(i
I

+ cd)

Now it is obvious that the assemblage of terms which compose
the first side of this equation may become equal to nothing in

four different ways ; namely, by supposing either x = a, or

X = ^, or .r — c, or .r — r/j for in either case one or othex"

of the factors jr — (7, .r — />, .r — c, x— dy will be equal to no-
thing, and nothing multiplied by any quantity whatever will

give nothing for the product. If any other value e be put
for X; then none of the factors e— a, e— b, e — c^ e— f/, being

equal to nothing, their continued product cannot be equal to

nothing. There are therefore^ in the proposed equation, four

roots
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roots or values of r ; and that which characterizes these roots

is, that on substituting each of them successively instead of .r,

the aggregate of the terms of the equation vanishes by the

opposition of the signs + and — .

The preceding equation is only of the fourth power or de-

gree ; but it is manifest that the above remark applies to

equations of higher or lower dimensions : viz, that in general

an equation of any degree v/hatever has as many roots as there

are units in the exponent of the highest power of the un-

known quantity, and that each root has the property of ren-

dering, by its substitution in place of the unknown quantity,

the aggregate of all the terms of the equation equal to no-

thnig.

It must be observed that we cannot have all at once ^'~cf,

x^zb, X = Cy &c, for the roots of the equation ; but that the

particular equations .v — a = 0^ x — 6 = 0, x — c = 0, &.c,

obtain only in a disjunctive sense. They exist as factors In

the sam.e equation, because algebra gives, by one and the same

formula, not only the solution of the particular problem from

which that formula may have originated, but also the solution

of all problems which have similar conditions. The differ-

ent roots of the equation satisfy the respective conditions

:

and those roots may differ from one another, by their quan-

tity , and by their mode of existence.

It is true, we say frequently that the roots of an equation

are x = a, x = b, x = c, &c, as though those values of x
existed conjunctively ; but this manner of speaking is an ab-

breviation, which it is necessary to understand in the sense

explained above.

2. In the equation A, all the roots are positive; but if the

factors which constitute the equation had been x J- «, x+ b,

X + c, X -{- d, the roots vvould have been negative or sub-

tractive. Thus
x^ -1- a-^ x^^ + ah^ x^ + abc') x + abed = (B)

+ abd

-f- acd

+ bfd

-\- hd
\- id.

has negative roots, those roots being a* = — fl, .r = — «,

x-=— Cf x= — d: and here again we are to apply them dis-

junctively.

3. Some equations have their roots in part poshive, in part

negative. Such is the following:

X' — al x'-'f- ab 1 x -{- abc == (C)a") x"- -f- abl X -{• a

b\ -acl
+ 6' J - be J , Here
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Here are the two positive roots viz, .v = a, x = h-, and one
negative root, viz, .v = — c : the equation being constituted

of the continued product of the three factors, x — a = 0,
.r - 6 = 0, -r + c- = 0.

From an inspection of the equations A, B, c, it may be in-

ferred, that a complete equation consists of a number of
terms exceeding by unitj/ the number of its roots.

4. Tlie preceding equations have been considered as formed
from equations of the first degree, and then each of them con-

tains so many of those constituent equations as there are units

in the exponent of its degree. But an equation which ex-

ceeds the second dimension, may be considered as composed
of one or more equations of the second degree, or of the

third, &c, combined, if it be necessary, with equations of the

first degree, in such manner, that the product of all those

constituent equations shall form the proposed equation. In-
deed, when an equation is formed by the successive multipli-

cation of several simple equations, quadratic equations, cubic

equations, &:c, are formed ; which of course may be regarded
as factors of the resulting equation.

5. It sometimes happens that an equation contains imagi-
nary roots ; and then they will be found also in its consti-

tuent equations. This class of roots always enters an equation
by pairs ; because they may be considered as containing, in

their expression at least, one even radical placed before a ne-
gative quantity, and because an even radical is necessarily

preceded by the double sign ± . Let, for example, the equa-
tion be x*— {Oa — 2c)^^ + (a^-f (r — iac -\- c'^+d^)x- + (2a-c-{-

ob'c - 2ar - 2ad'-)x + {a^ + b') , (c' + d') ~ 0. This may
be regarded as constituted of the two subjoined quadratic
equations, x^ - 2ax -\- d^ -\- b'- ^r. 0^ x"- -}- 2ex •{ c^ -{- d- •=. :

and each of these quadratics contains two imaginary roots

;

the first giving or = a di ^\/ — 1, and the second x = — c ±
dV-l.

In the equation resulting from the product of these two
quadratics, the coefficients of the powers of the unknown
quantity, and of the last term of the equation, are real quan-
tities, though the constituent equations contain imaginary
quantities ; the reason is, that these latter disappear by means
of addition and multiplication.

The same will take place in the equation {x — ci) . (r -f 6) .

(^" -f 2cx -\- c- + a^) = 0, which is formed of two equations

of the first degree, and one equation of the second whose
roots are imaginary.

These remarks being premised, the subsequent geneml
theorems wDl be easily established.

THEOREM
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THEOREM I.

Whatever be the Species of the Roots of an Equation, when
the Equation is arranged according to the Powers of the

Unknown Quantity, if the First Term be positive, and'

have unity for its Coefficient, the following Properties ma)''

be traced

:

I. The first term of the equation is the unknown quantity

raised to the power denoted by the number of roots.

II. The second term contains the unknown quantity raised

to a power less than the former by unity, with a coefficient

equal to the sum of the roots taken with contrary signs.

III. The third term contains the unknov/n quantity raised

to a power less by 2 than that of the first term, with a coeffi-

cient equal to the sum of all the products which can be form-

ed by multiplying all the roots two and two.

IV. The fourth term contains the unknown quantity raised

to a power less by 3 than that of the first term, with a coeffi-

cient equal to the sum of all the products which can be made
by multiplying any three of the roots with contrary signs.

V. And so on to the last term, which is the continued

product of all the roots taken with contrary signs.

All this Is evident from inspection of the equations ex-

hibited in arts. 1, 2, 3, 5.

Cor. 1. Therefore an equation having all its roots real,

but some positive the others negative, will want its second

term when the sum of the positive roots is equal to the sum
of the negative roots. Thus, for example, the equation c

will want its second term, if ^ -j- ^ = c.

Cor. 2. An equation whose roots are all imaginary, will

Want the second term, if the sum of the real quantities which

enter Into the expression of the roots, is partly positive,

partly negative, and has the result reduced to nothing, the

imaginary parts mutually destroying each other by addition

in each pair of roots. Thus, the first equation of art. 5 will

want the second term if — 2a -{-Q.C = 0, or a = c. The
.second equation of the same article, which has its roots partly

real, partly imaginary, will want the second term if b —a -t

2c = 0, or a — 7=z 2c.

Cor. 3. An equation will want its third term, if the sum
of the products of the roots taken two and two, is partly po-
sitive, partly negative, and these mutually destroy each other.

lievHi'-k. An incomplete equation may be thrown into the

form oicoviplcic equations,by introducing, with the coefficient

a cyphery the absent powers of the unknown quantity : thus,

for
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for the equation .r' + r =: 0, may be written x^ -\- x^ -\-

X -\- r = 0. This in some cases will be useful.

Cor. 4. An equation with positive roots may be trans-

formed into another which shall have negative roots of the

same value, and reciprocally. In order to this, it is only ne-

cessary to change the signs of the alternate terms, beginning

with the second. Thus, for example, if instead of the equa-

tion jr' — Sx^ -j- 17.r — 10 = 0, which h.is three positive roots

1, 2, and 5, we write x^ + 8x^ + 17.r -}- 10 = 0, this latter

equation will have three negative roots :r r= — 1, .r = — 2,

X zz — 5. In like man! er, if instead of the equation x^ -{-

2x^— 13x+ 10= 0, v/hich has two positive roots .r = i , x=i2,
and one negative root or = — .5, there be taken r^ —2x- —
13.r — 10 = 0, this latter equation will have two negative

roots, X =: — l,Trr — 2, and one positive root x =: 5.

In general, if there be taken the two equations, (.r — a) x
(x— b) X (x — c)x {x — d) X &c = 0, and (.r -\-a)x {x -\-b)x

(x -\- c) X (r + d) X &c =: 0, of which the roots are the same
in magnitude, but with different signs : if tiiese equations be
developed by actual multiplication, and the terms arranged
according to the powers of x, as in arts. 1 , 2 j it will be seen

that the second terms of the two equations will be affected

with different signs, the third terms with like signs, the
fourth terms with different signs, &c.

When an equation has not all its terms, the deficient terms
must be supplied by cyphers, before the preceding rule can
be applied.

Cor. 5. The sum of the roots of an equation, the sum of
their squares, the sum of their cubes, &c, may be found with-
out knowing the roots themselves. For, let an equation of
any degree or dimension, 77i, be x'" -\-Jx"'~^ -f gx'"''^ -{-

/ix""^ -\- 8cc = 0, its roots being a, by c, dy Sec. Then we
shall have,

1st. The sum of the first powers of the roots, that is, of
the roots themselves, or a -\- b -\- c -\- 8<:c =^ — J ; since the

coefficient of the unknov/n quantity in the second term, is

equal to the sum of the roots taken with different signs.

2dly. The sum of the squares of the roots, is equal to the

square of the coefficient of the second term made less by
twice the coefficient of the third term : viz, a* -f Z»^ + C* -h

&c =J^ — 2g. For, if the polynomial a -\- b -\- c -\- &c, be
squared, it will be found that the square contains the sum of
the squares of the terms ^, b, c, &c, plus twice the sum of
the products formed by multiplying two and two all the roots

a, b, c, &c. That is, [a -i-b + c + &c)^ =z a^ + b' + c^ 4- Scg

-f 2{oI? + ac-{- be -f Xc). But it js obvious, from equa. a, e,

Vql hi. X th^;
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that (a + b + c -\- Scc)\ =f- and {ah + ac + k + Sic) = g.
Thus we have /* = (a' + ^^ + c^ + &c) + 2g \ and con-
sequently a^ + ^^ + c^ + &c = /- — 2^.

Sdly. The sum of the cubes of the roots, is equal to 3 times

the rectangle of the coefficient of the second and third terms,

made less by the cube of the coefficient of the second term,

and 3 times the coefficient of the fourth term : viz, a^ + h^

-f c^ + &c = —p -{ 3fg—^h, For we shall by actual in-

Tolution, have (a + ^ + c + &c)3 = a^ -f-
6' + c' + &c -{-

'6{a + b -\- c) X {ab + ac+ be) - 3abc. But (a + * + c + &c)'
= -/^ (« + ^ + 6- 4- &c) X (ab + ac + be + ^c) = -fg,

' abc = — A. Hence therefore, —f^ = d^ -\- b^ -\- c^ -\-'^c —
Cfg + Sh ; and consequently, a^ + P + e^ + &ic — — /^ +•

3/g — 3h. And so on, for other powers of the roots.

THEOREM II.

In Every Equation, which contains only Real Roots :

I. If all the roots are positive, the terms of the equation

will be + and — alternately.

II. If all the roots are negative, all the terms will have the

sign +.
III. If the roots are partly positive, partly negative, there

will be as many positive roots as there are variations of signs,

and as many negative roots as there ^iTQpermaneneies of signs

;

these variations and permanencies being observed from one
term to the following through the whole extent of the equa-

tion.

In all these, either the equations are complete in their

terms, or they are made so.

The first part of this theorem is evident from the exami-
nation of equation A ; and the second from equation b.

To demonstrate the third, we revert to the equation c

(art. 3), which has two positive roots, and one negative. It

may happen that either f > r?+ ^, or c < « + b.

In the first case, the second term is positive, and the third

is negative ; because, having c > a -f ^, we shall have ac -f-

be > (a + bf > ab. And, as the last term is positive, we see

that from the first to the second there is a permanence of
signs j from the second to the third a variation of signs ; and
from the third to the fourth another variation of signs. Thus
there are two variations and one permanence of signs ; that

is, as many variations as there are positive roots, and as many
permanencies as there are negative roots.

In the second case, the second term of the equation is ne-

gative, and the third may be either positive or negative. If

that
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that term is positive, there will be from the first to the second

a variiition of signs ; from the second to the third another

variation; from the third to the fourth a permanence; making
in all two variations and one permanence of signs. If the

third term be negative ; there will be one variation of signs

from the first to the second ; one permanence from the second

to the third ; and one variation from the third to the fourth:

thus making again two variations and one permanence. The
number of variations of signs therefo^-e, in this case as well as

in the former, is the same as that of the positive roots ; and

the number of permanencies, the same as that of the negative

roots.

Coral. Whence it follows, that if it be known, by any
means whatever, that an equation contains only real roots, it

is also known how many of them are positive, and how many
negative. Suppose, for example, it be known that, in the

equation x^ + 3.r* - 23x^ - llx- + \66xS- 120 = 0, all

the roots are real : it may immediately be concluded that there

are three positive and two negative roots. In fact this equa-

tion has the tliree positive roots j.' = l,a: = 2, ^ = 3; and

two negative roots, .r= — 4, .r = — 5.

If the equation were incomplete, the absent terms must be

supplied by adopting cyphers for coefiicients, and those terms

must be marked with the ambiguous sign ± . Thus, if the

equation were
x^ — 2Qx'^ + 30.r* + 19^ — 30 = 0,

all the roots being real, and the second term wanting, it

must be written thus :

.

x'^ ± Ox* - 20.r2 + 30x* + 19.r -- 30 = 0.

Then it will be seen that, whether the second term be posi-

tive or negative, there will be 3 variations and 2 permanencies

of signs : and consequently the equation has 3 positive and 2

negative roots. The roots in fact are, 1, 2, 3, — 1, — 5.

This rule only obtains with regard to equations whqse roots

are real. If, for example, it were inferred that, because the

equation x^ + 2x + 5 = had two permanencies of signs, it

had two negative roots, the conclusion would be erroneous

:

for both the roots of this equation are imaginary.

THEOREM III.

Every Equation may be Transformed into Another whose
Roots shall be Greater or Less by a Given Quantity.

In any equation whatever, of which x is unknown, (the

equations A, B, c, for example) make ;r = z + w, z being a

new unknown quantity, m any given quantity, positive or

N 2 negative

:
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negative : then substituting, instead oix and its powers, their

values resulting from the hypothesis that x =. z \- m •, so shall

there arise an equation, whose roots shall be greater or less

than the roots of the primitive equation, by the assumed
quantity m.

Carol. The principal use of this transformation is, to take

away any term out of an equation. Thus, to transform an
equation into one which shall want the second term, let m be

so assumed that nm — a = 0, or m = —, 7^ being the index

of the highest power of the unknown quantity, and a the

coefficient of the second term of the equation, with its sign

changed : then, if the roots of the transformed equation can

be found, the roots ofthe original equation may also be found,

because x zz z -\ .

n

THEOREM IV.

Every Equation may be Transformed into Another, whose
Roots shall be Equal to the Roots of the First Multiplied

or Divided by a Given Quantity.

1 . Let the equation be z^ -)- az^ -\- bz -\- c-zzO: if we put

fz = .r, or 2 = --Tj the transformed equation will be x'^ +•

fax^ -\-f^bx •\-f^c zz 0, of which the roots are the respective

products of the roots of the primitive equation multiplied into

the quantity^.

By means of tliis transformation, an equation with frac-

tional quantities, may be changed into another which shall

be free from them. Suppose the equation were s^ -j f-

— + -7- = : multiplying the whole by the product of the

denominators, there would arise ghkz^ + hkaz^ + gkbz +
ghd = : then assuming g/ikz zz Xy or z = -^ , the trans-

formed equa. would be x^ + hkax^ -\- g'^k'-Jibx -\-g^k^h^d = 0.

The same transformation may be adopted, to exterminate

the radical quantities which affect certain terms of an equa-

tion. Thus, let there be given the equation z^ + az^\/k -f

bz 4- cVk: make Z\/k = .rj then will the transformed

equation be x^ + akx'^ + ^^^^ + ck'- = 0, in which there are

no radical quantities.

2. Take, for one more example, the equation z^ + az'' -{-

bz + c = 0. Make -^ = .r ; then will the equation be

transformed to .r^ + ^-^S ^±.— q in which the roots

are
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1

are equal to the quotients of those of the primitive equations

divided hyf.
It is obvious that, by analogous methods, an equation may

be transformed into another, the roots of which shall be to

those of the proposed equation, in any required ratio. But
the subject need not be enlarged on here. The preceding

succinct view will suffice for the usual purposes, so far as re-

lates to the nature and chief properties of equations. We shall

therefore conclude this chapter with a summary of the most

useful rules for the solution of equations of different degrees,

besides those already given in the first volume.

I. Rules for the Solution of Quadratics by Tables of Sines

and TangeJits.

1. If the equation be of the form x^ -\- px =^ q :

2
Make tan a=: —^/

q

; then will the two roots be,

^ = + tan \AVq x = — cot ^ A v'?*
2. For quadratics of the form .r^ - px = q.

2
Make, as before, tan a =— y/y : then will

^ = — tan \^Vq .r = + cot \Ks/q.

3. For quadratics of the form x^ + P-f" = ~ 1-
o

Make sin a = —Vq: then will

X = ~ tan \A\/q x ~ — cot ^A Vq.
4. For quadratics of the form x'^ — ^.r ~ — q.

2
Make sin a :r — »/q : then will

T = + tan ih.\/q .z' = + cot i:A\/y.
2 ......

In the last two cases, if— v^ y exceed unity, sm A is imagmary,

and consequently the values of x.

The logarithmic application of these formulae is very simple.

Thus, in case 1st. Find a by making
10 + log 2 + i log q — log p = log tan A.

Then lojr .r = ^ + ^°S tan ^a + i-
log q - 10.men log x- ^_ (i^gcot^ + i log q - 10).

Note. This method of solving quadratics, is chiefly of use

when the quantities p and q are large integers, or complex

fractions.

II. Rulesfor the Solution of Cubic Equations by Tables of
Sines, TangentSy and Secants.

1 . For cubics of the form .r^ -\- px ± q rz 0.

Then x = :p cot 2a . 2 '/^p.

Make tan b = — . 2^j-p tan a =^ tan |b.

S. For
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2. For cubics of the form .r^ — px ± q n 0.

Make sin b = — . Sy^^p tan a =^ tan |b.

Then x zz ^ cosec 2a . 2v/-jp.

Here, if the value of sin b should exceed unity, b would
be imaginary, and the equation would fall in what is called

the irreduable case of cubics. In that case we must make

cosec 3a = — . 2v'iP> and then the three roots would be

X = ± sin A . 2v/jp.
X = ± sin (60* - A) . 2 v't/J.

^ = ± sin (60* + a) . 2v/|p.
If the value of sin b were 1 , we should have b = 90", tan

A = 1 J therefore a r: 45°, and t = q= 2V' J-/;. But this

would not be the only root. The second solution would give

cosec 3a n: 1 : therefore A = ~ ; and then

X — ± sin 30" . 2v/i/7 = ± \/|p-
^ = ± sin 30" .2V\p = ± V^p.
or =: q= sin 90° . IV-^p = +2\/\p.

Here it is obvious that the first two roots are equal, that their

sum is equal to the third with a contrary sign, and that this

third is the one which is produced from the first solution*.

In these solutions, the double signs in the value of a', re-

late to the double signs in the value of q.

N. B. Cardan's Rule for the solution of Cubics is given in

the first volume of this course.

• The tables of sines, tangent's, &c, besides their use in trigonometry, and
in the solution of the equations, are also very ustful in finding tht value of

algebraic expressions where extraction of roots would be otherwise required.

Tims if a and 6 be any two quantities, of which a is the greater. Find x, z,

5 .
^ a ^

, .

&c, so, that tan x = a/—, sin z — */— , sec y =« -, tan u ——, and sm
a 0, b a

h
t = — : then will

a
log v'(a' — ?'*) = log a + log sin y = log i + log tan y,

log V .«' - *') = iC'og (" + *) + '0° (" - ^)]-

log \/(,a? + i'*) = lov a + log sec m = log h + log cosec u.

log V(« + t) = i log a + log sec .r = J log a + ^log 3 + log cos \y.

log V'(« - ') = \ '"g <» + 'og cos 2 = ^ log a + I log 2 + log sin ^.
m

log (a±iO"^ = —[log a + log cos t + log tan 45°± |^].

«

The first three of ihcie formulse will often be useful, when two sides of «

right-angled triangle are §iven, to iiud the thiid.

III. Solution
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III. Solution of Biquadratic Equations.

Let the proposed biquadratic be .r* + ^px^ — qx^ -Vrx-^s.

Now(.r' +px + nf ~x^ + '2px' + (/)" + 2/0^^" + 2;;7M + n"

:

if therefore (/?" + 2/0 t"- + 2.pnx + n- be added to both sides

of the proposed biquadratic, the first will become a complete

square (.r^ + px \- lif, and the latter part (p- -f 2« + f/)x*

+ {2pn + r)x 4- n"- + 5, is a complete square if 4(p- + 2n

+ q) . {n- +s) = Q,pn + ;'^; that is, multiplying and arranging

the terms according to the dimensions of », if 8/i' + 4qn' -f-

(85 — 4r/?)« + 4^5 + 4-p's - r^ = 0. From this equation

let a value of n be obtained, and substituted in the equation

(x^+px + nY = (P' + 2w + y).r + {2pn + r)x + n* + s ;

then, extracting the square root on both sides

,, ,
, ( Cwhen2;jn+ r

,
, , , c , , ( when2p?»+ r

cxx^^px^rn-±
J

v'(;;^-+ 2/.+ y).r-'/(n^+^)
| j^ negative.

And from these two quadratics, the four roots ofthe given

biquadratic may be determined *.

Note. Whenever, by taking away the second term of a

biquadratic, after the manner described in cor. th. 3, the

fourth term also vanishes, the roots may immediately be ob-

tained by the solution of a quadratic only.

A biquadratic may also be solved independently of cubics,

in the following cases :

1. When the difference between the coefficient of the

third term, and the square of half that of the second term, is

equal to the coefficient of the fourth term, divided by half

that of the second. Then ifp be the coefficient of the second

term, the equation will be reduced to a quadratic by dividing

it by x^ ± ipx.

2. When the last term is negative, and equal to the square

of the coefficient of the fourth term divided by 4 times that

of the third term, minus the square of that of the second:

then to complete the square, subtract the terms of the pro-

posed biquadratic from {x^ ± IpxY, and add the remainder

to both its sides.

3. ^Vhen the coefficient of the fourth term divided by

that of the second term, gives for a quotient the square root

of the last term : then to complete the square, add the square

of half the coefficient of the second term, to twice the square

* This rule, for solving biquadratics, by conceiving each to be the difference

oftwo squares, is frequently ascribed to Dr. Waring ; but its original inventor

was Mr. Thumas Simpson, fonneily Professor of Mathematics ia the Royal
Military Academy.

root
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root of the last term, n;ult"ply the sum by x', from the pro-

ducf^ take the third term, and add the remainder to both sides

of the biquadratics.

4. The fourth term will be made to go out by the usual

operation for taking away the second term, when the differ-

ence between the cube of half the coefficient of the second

term and half the product of the coefficients of rhe second

and third term, is equal to the coefficient of the fourth term.

IV. Elder's Bidefor the Solution of Biquadratics.

Let j:"^ — ax^— bx ~ c = 0, be the given biquadratic equa-

tion wanting the second term. Take/ rr !«, g = -^'^a''+ ^c,

and h = -^l': or ^h = ^b ; with which values of /', gi hy

form the cubic equation z^ — fz- { gz — h= 0. Find the

poots of this cubic equation, and let them be called p, 9, r

Then shall the four roots of the proposed biquadratic be these

following: viz.

When ^b is negative

:

X = \/p -j- vy — Vr.
X = \/p — v^q -\- \/r,

X = ~ Vp + Vq + A/r.

X zz. — »/p — \/'q — »/r.

When \b is positive.

1. X — Vp + Vq + Vr
2. X = >s/p — '/q — W.
3. ^ = - y'p + Vq - Vr.
4. .r = - v/y; - Vq -\- Vr.

Note 1. In any biquadratic equation having all its terms,

if
"I
of the square of the coefficient of the 2d term be greater

than the product of the coefficients of the 1st and 3d terms,

or -| of the square of the coefficient of the 4th term be greater

than the product of the coefficients of the 3d and 5th terms,

or -^ of the square of the coefficient of the 3d term greater

than the product of the coefficients of the 2d and 4th terms;

then all tlie roots of that equation will be real and unequal:

but if either of the said parts of those squares be less than

either of those products, the equation will have imaginary

roots.

2. In a biquadratic x^ + ax^ + bx- \- ex -\- d =. 0, of
which two roots are impossible, and d an affirmative quantity,

then the two possible roots will be both negative, or both
affirmative, according as a^ — A^ab + 8c, is an affirmative or^

a negative quantity, if the signs of the coefficients a, h, c, dy

are neither all affirmative, nor alternately — and +*.

• Vaiioiis genera/ rules for the solution of equations have been sjiven by
Detnoiviv, Ijczout, La,ranf;p, &,c ; but ilie tnos't universal in their applica-
tion are approximating rules, oi wliich a very simple and useful one is given
in our first vulume.

EXAMPLES.
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EXAMPLES.

Ex. 1. Find the roots of the equation ,v- + tz^' = r^^fT^'

by tables of sines and targents.

Here p = —, q — - -„ . , and the equation agrees with the

- ., 88 1695 J , ,
. 16!>5

1st form. Also tan A = - -/jg^j and r = tan ^A = v/p^^.

In logarithms thus

:

Log 1695=: 3-2291697

Arith. com. log 12716 — 5 8956495

sum + 10 = 19-1248192

half sum = 9*5624096
log 88 = 1-9444827

Arith. com. log 7 = 9-1549020

sum - 10 = log tan A = 10-0617943 = log tan 77*42'3l":|.^

log tan 4a = 9-9061115 r: log tan 38°j1'15"|-,

log A/y, as above = 9-5624096

sum — 10 = log T = — 1-468521 1 = log -2941 176.

5
This value of x, viz '2941 176, is nearly equal to -. To find

whether that is the exact root, take the arithmetical compli-

ment of the la^t logarithm, viz 0-5314379, and consider it as

the logarithm of the denominator of a fraction whose nume-

rator is unity : thus is the fraction found to be 7:77 exactly,

5
and this is manifestly equal to — . As to the other root of

. . , 1<>D5 . 5 339
the equation, it is equal to - j^^ — _=__.

Ex. 2. Find the roots of the cubic equation
, 403 , 4r.

, , - .

0.-' — -—X + rr;. = 0, by a table or snies.
4-tl I4" ' -'

•u 403 46 ,
,

.

Hereyj = r^r, q =: —-, the second term is negative, and

4p^>27q^:so that the example falls under the irreducible case,

lience, sin 3a =r -—r=- X rx-, X = -:— .
:' 147 403 403 403 16 J 2

The three values of r therefore, are
,1612

.r= smAV'n^^.
• /^^o V ^1612.r= sm(60-A)V~.

.r=-sin(60^ + A)A/|^.

The
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The logarithmic computation is subjoined.

Log 1612 = 3"207365O

Arith.com.log 1323 = 6 -878-^402

sum - 10 = 0-OH5S052

half sum zz O-0429O26 const, log.

Arith-Com.const.log = 9'9j70974

log 414. ... = 2-6170003

Arith. com. log 403 . = 7-3946950

log sin 3a ... = 9-9687927 = log sin 68' 32' 18"|:.

Log sin A = 9-5891206

const, log 0-0429026

l.sum-10=log^= -- 1-6320232 =log '4285714 = log |.

Log sin (60«-a) = 9-7810061

const log = Q-0429026

£.sum- 10=log^'= - l-8'>->90S7 =log -6666666 = log ^.

Log sin (60°+ A) = 9-9966060

const, log = 0-0429026

S.sum-10= log-jr = 0-0395086 = log r095238= logl^.

So that the three roots are
-f , |-, and — |4 j of which the

first two are together eq^ual to the third with its sign changed,

as they ought to be.

Ex. 3. Find the roots of the biquadratic r* — 25^* +
€0x — 36 = 0, by Euler's rule.

Here a = 25, ^ = — 60, and c = 36 ; therefore

^ 25 625
, ,-

769 , , 225
/ = — ,ff = [-9 = —r, and n = —-

.

Consequently the cubic equation will be

, 25 J ,
769 22.5 _

2 ^ 16 4

The three roots of which are '

2 = y = p, and 2 = 4 = ^, and 2 = ^ = r;

the square roots of these are v/p = |, Vq = 2 or 4, -v/r= |-.

Hence, as the value of \h is negative, the four roots are

1st. X = -I +4 - 1= 1>

2d. T = 4 - -% + i = 2,

Sd. T=- f + 4 + 1= 3,

4th. ^ = -|-A_^=-6.
-E.r. 4. Produce a quadratic equation whose roots shall be

I-
and ^. Ans. x~ — ^x + -| = 0.

Ex. 5. Produce a cubic equation whose roots shall be 2,

5, and - 3. Ans. x^^ - 4z'- - 11^ + 30 = 0.

Ex. Q.
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E.v. 6. Produce a biquadratic which shall have for the

roots 1, 4, — 5, and 6 respectively.

Ans. X* - 6x^ — 2Lr* -I- 146^ - 120 = 0.

E.V. 7. Find ^, when x^ + 347^ = 221 1 0.

Ans. X = 55t X =— 402.

Ex. 8. Find the roots of the quadratic x^ — -^x -^.

Ans. .r = 10, x = .

T. o , , . , 264 695
Ex. 9. Solve the equation x"- - ^x = — — .

Ans. X = 5i X = —r,

Ex. 10. Given x^ - 241l3r = - 481860, to find x.

Ans. X = '20yX= 24093.

iJ.r. 1 1 . Find the roots of the equation ^' — 3.r — 1 = 0.

Ans. the roots are sine 70°, — sin 50°, and — sin 10', to a

radius = 2 ; or the roots are twice the sines of those arcs as

given in the tables.

Ex. 12. Find the real root of cT^ — x — 6 = 0.

Ans. |V3 X sec 54°44'20".

Ex. 13. Find the real root of 25x' + 15x — 46 = 0.

Ans. 2 cot 74'' 27' 48".

Ex. 14. Given x'^ — 8x^ — 12a:^ + S4:r - 63 = 0, to

find X by quadratics. Ans. a? = 2+ a/1 ± V 11 -{-VI.

Ex. 15. Given a'' + 36^^^ - 400x- - SlGSx + 7744 = 0,

to find Xf by quadratics. Ans. j: z= 1 1 + >/209,

Er. 16. Given x* + 24.r^ - 1 14.r^ — 24:r + 1 = 0, to

find X. Ans. a? = ± y^ 1^'7 — 14, .r = 2 ± \/5.

Ex. 17. Find .r, when a"* — 12a' — 5 = 0.

Ans. X = 1 ± V2, X —— 1 ±2V— I.

Ex. 18. Find X, when x^ - 12a' + 47a* - 72a + 36 = 0.

Ans. a =: 1, or 2, or 3, or 6,

JSa. 19. Given a5-5a'a*-80aV-68«V+ 7«*a+a5= 0,

to find a.

Ans. X = — dj X zz 6a± aVSlj x = ± a>^/ 10 — 3fl,

CHAPTER
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CHAPTER IX.

ON THE NATURE AND PROPERTIES OF CURVES, AND THE
CONSTRUCTION OF EC^ATIONS.

SECTION I.

Nature and Properties of Curves.

Def. 1, A curve is a line whose several parts proceed in

different directions, and are successively posited towards dif-

ferent points in space, which also may be cut by one right

line in two or more points.

If all the points in the ci^-ve may be included in one plane,

the curve is called ?i plane curve j but if they cannot all be

comprized in one plane, then is the curve one of double cur-

vature.

Since the word direction implies straight lines, and in strict-

ness no part of a curve is a right line, some geometers prefer

defining curves otherwise : thus, in a straight line, to be called

the line of the abscissas, from a certain point let a line arbi-

trarily taken be called the abscissa, and denoted (commonly)
by X : at the several points corresponding to the different

values of x, let straight lines be continually drawn, making a

certain angle with the line of the abscissas : these straight lines

being regulated in length according to a certain law or equa-

tion, are called ordinates ; and the line or figure in which
their extremities are continually found is, in general, a curve

line. This definition however is not free from objection
;

for a right line may be denoted by an equation between its

abscissas and ordinates, such as y — ax -\- b.

Curves are distinguished into algebraical or geometrical,

and transcendental or mechanical.

DeJ. 2. Algebraical or geometrical curves, are those in

which the relations of the abscissas to the ordinates can be

denoted by a common algebraical expression : such, for ex-

ample, as the equations to the conic sections, given in the first

chapter of this volume.

])ef. 3. Tramcendental or mechanical curves, are such as

cannot be so defined or expressed by a pure algebraical equa-

tion ; or when they are expressed by an equation, having one
of
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of its terms a variable quantity, or a curve line. Thus,y=
log .r, y =! k . sin .r,y = A . cos Vy y = a", are equations to

transcendental curves ; and the latter in particular is an equa-
tion to an exponential curve.

Def. 4<. Curves that turn round a fixed point or centre,

gradually receding from it, are called spiral or radial curves.

Def. 5. Faniilij or tribe of curves, is an assemblage of
several curves of different kinds, all defined by the same
equation of an indeterminate degree ; but differently, accord-

ing to the diversity of their kind. For example, suppose an

equation of an indeterminate degree, a"'~^x-=.y'" : if in = 2,

then will ax = y^; if Wi = 3, then will a'^x =
J/^ ; if ni = 4,

then is a^x — j/* ; &c : all which curves are said to be of the

same family or tribe.

Z)eJ'. 6. The axis of a figure is a right line passing through
the centre of a curve, when it has one : if it bisects the ordi-

nates, it is called a diameter.

Def. 7. An asymptote is a right line which continually

approaches towards a curve, but never can touch it, unless the

curve could be extended to an infinite distance.

Def 8. An abscissa and an ordinate, whether right or

oblique, are, when spoken of together, frequently termed co-

ordinates.

Art. 1. The most convenient mode of classing algebraical

curves, is according to the orders or dimensions of the equa-
tions which express the relation between the co-ordinates.

For then the equation for the same curve, remaining always
of the same order so long as each of the assumed systems of
co-ordinates is supposed to retain constantly the same incli-

nation of ordinate to abscissa,while referred to different points

of the curve, however the axis and the origin of the abscissas,

or even the inclination of the co-ordinates in different systems,

may vary ; the same curve will never be ranked under dif-

ferent orders, according to this method. If therefore we
take, for a distinctive character, the number of dimensions

which the co-ordinates, whether rectangular or oblique, form
in the equation, we shall not disturb the order of the classes,

by changing the axis and the origin of the abscissas, or bj
varying the inclination of the co-ordinates.

2. As algebraists call orders of different kinds of equations,

those which constitute the greater or less number of dimen-
sions, they distinguish by the same name the different kinds

of resulting lines. Consequently the general equation of the

first order being ~ « -{- /3.r -f yy ; we may refer to the

first
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first order all the lines which, by taking t and ?/ for the co-

ordinates, whether rectangular or oblique, give rise to this

equation. But this equation comprises the right line alone,

which is the most simple of all lines ; and since, for this rea-

son, the name of curve does not properly apply to the first

order, we do not usually distinguish the different orders by
the name of curve lines, but simply by the generic term of
lines : hence the first order of lines does not comprehend any
curves, but solely the right line.

As for the rest, it is indifferent whether the co-ordinates

are perpendicular or not j for if the ordinates make with the

axis an angle p whose sine is jw, and cosine v, we can refer the

equation to that of the rectangular co-ordinates, by making

^ = —, and X = \- 1 y which will give for an equation

between the perpendiculars t and Uy

Thus it follows evidently, that the signification of the

equation is not limited by supposing the ordinates to be rightly

applied : and it will be the same with equations of superior

orders, which will not be less general though the co-ordinates

are perpendicular. Hence, since the determination of the in-

clination of the ordinates applied to the axis, takes nothing

from the generality of a general equation of any order what-

ever, we put no restriction on its signification by supposing

the co-ordinates rectangular j and the equation will be of

the same order whether the co-ordinates be rectangular or

oblique.

3. All the lines of the second order will be comprised in

the general equation

= a + |S.r + 7j/ -h ^.r- + sry + Kj/' ;

that is to say, we may class among lines of the second order

all the curve lines which this equation expresses, .r and y de-

noting the rectangular co-ordinates. These curve lines are

therefore the most simple of all, since there are no curves in

the first order of lines ; it is for this reason that some writers

call them curves of the first order. But the curves included

in this equation are better known under the name of conic
3KCTIONS, because they all result from sections of the cone.

The different kinds of these lines are the ellipse, the circle,

or ellipse with equal axes, the parabola, and the hyperbola

;

the properties of all which may be deduced with facility from
the preceding general equation. Or this equation may be

transformed into the subjoined one:
li ^ + g.T + ct _

and



NATURE AND PROPERTIES OF CURVES. 191

and this again may be reduced to the still more simple form

Here, when the first termor* is affirmative^ the curve ex-
pressed by the equation is a hyperbola ; when/^r^ is negative,

the curve is an ellipse : when that term is absent, the curve
is a parabola. When x is taken upon a diameter, the equa-
tions reduce to those already given in sect. 4 ch. i.

The mode of effecting these transformations is omitted for

the sake of brevity. This section contains a smnmarij, not an
investigation of properties : the latter would require many
volumes, instead of a section.

4. Under lines of the third order, or curves of the second,

are classed all those which may be expressed by the equation
= « + /3jr -f- y^/ -I- J.r^ -f £.rj/+ ?3/^+ 1; t'^ + 0.r^j/+ /jrj/*+jc^3^

And in like manner we regard as lines of the fourth order,

those curves which are furnished by the general equation

= a + /3.r + yy + ^x- + zxi/ + ^J/^ + -q-^^ + ^-t'^J/ + i^J/* +
xj/5 + Xx"^ + jw-'^^j/ + vx-y^ + ^xy^

-f.
oj/'*

;

taking always x and y for rectangular co-ordinates. In the

most general equation of the third order, there are 10 con-
stant quantities, and in that of the fourth order 15, which
may be determined at pleasure ; whence it results that the
kinds of lines of the third order, and, much more those of

the fourth order, are considerably more numerous than those
of the second.

5. It will now be easy to conceive, from what has gone be-
fore, what are the curve lines that appertain to the fifth, sixth,

seventh, or any higher order ; but as it is necessary to add to

the general equation of the fourth order, the terms

x'', x*y, .r^j/% ^W^^ '^J/'*»3'S

with their respective constant coefficients, to have the general

equation comprising all the lines of the fifth order, this latter

will be composed of 2 1 terms : and the general equation com-
prehending all the lines of the sixth order, will have 28 terms j

and so on, conformably to the law of the triangular numbers.
Thus, the most general equation for lines of the order n, will

, {n+ \).{n + 2)
, ,contam — terms, and as many constant letters,

which may be determined at pleasure.

6. Since the order of the proposed equation between the

co-ordinates, makes known that of the curve line ; whenever
we have given an algebraic equation between the co-ordinates

X and j/, or t and u, we know at once to what order it is ne-

cessary to refer the curve represented by that equation. If

the equation be irrationali it must be freed from radicals, and
if
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if there be fractions, they must be made to (Hsappear ; this

clone, the greatest number of dimensions formed by the va-

riable quantities x and y, will indicate the order to which the

line belongs. Thus, the curve which is denoted by this equa-

tion 1/^ — ax :=i 0, will be of the second order of lines, or of

the first order of curves j while the curve represented by the

equation J/-
= x^/{a' — a^'), will be of the third order (that

is, the fourth order of lines), because the equation is of the

fourth order when freed from radicals ; and the line which is

indicated by the equation y = ^, will be of the third

order, or of the second order of curves, because the equation

when the fraction is made to disappear, becomes a^y + x^y =
,
a' — ax^y where the term x-y contains three dimensions.

7. It is possible that one and the same equation may give

different curves, according as the applicates or ordinates fall

upon the axis perpendicularly or under a given obliquity.

For instance, this equation, j/^ = ax — .r% gives a circle, when
the co-ordinates are supposed perpendicular \ but when the

co-ordinates are oblique, the curve represented by the same
equation will be an ellipse. Yet all these different curves ap-

pertain to the same order, because the transformation of rect-

angular into oblique co-ordinates, and the contrary, does not

affect the order of the curve, or of its equation. Hence,

though the magnitude of the angles which the ordinates form
with the axis, neither augments nor diminishes the generality

of the equation, which expresses the lines of each order ; yet,

a particular equation being given, the curve which it expresses

can only be determined when the angle between the co-or-

dinates is determined also.

8. That a curve line may relate properly to the order in-

dicated by the equation, it is requisite that this equation be

not decomposable into rational factors ; for if it could be com-
posed of two or of more such factors, it would then compre-

hend as many equations, each of which would generate a

particular line, and the re-union of these lines would be all

that the equation proposed could represent. Those equations,

then, which may be decomposed into such factors, do not

comprise one continued curve, but several at once, each of

which may be expressed by a particular equation ; and such

combinations of separate curves are denoted by the term com-
plex curves.

Thus, the equation y"^ = ay + xy — ax^ which seems to

appertain to a line of the second order, if it be reduced to

zero by making y"- ~ ay — xy -f ax = 0, will be composed
of the factors (/,'— x) (y — a) = 0; it therefore comprises

the
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the two equations ?/ — a; = 0, arid 3/ — « = 0, both of which

belong to the right Hne : the first forms wif^h the axis at the

origin of the abscissas an angle equal to haU a right angle j

and the second is parallel to the axis, and drawn at a distance

= a. These two lines, considered together, are comprized

in the proposed equation if- — ay + ^3/ — a^' In like man-
ner we niay regard as complex this equation, j/* — xy^ —
flV — ay^ 4- ax^y + ^'"i;y = ^ ; for its factors being {y — x)

iy— d) {y-—ax) = 0, instead of denoting one continued line

of the fourth order, it comprises three distinct lines, viz, two
right lines, and one curve denoted by the equa.j/^ — ax=Q.

9. We may therefore form at pleasure any complex lines

whatever, which shall contain 2 or more right lines or curves.

For, if the nature of each line is expressed by an equation re-

ferred to the same axis, and to the same
origin of the abscissas, and after having

reduced each equation to zero, we mul-
tiply them one by another, there will re-

sult a complex equation which at once

comprizes all the lines assumed. For
example, if from the centre c, with a

radius CA =: a, a circle be described ; and

further, if a right line ln be drawn through the centre c

;

then we may, for any assumed axis, find an equation which
will at once include the circle and the right line, as though
these two lines formed only one.

Suppose there be taken for an axis the diameter AB, that

forms with the right liae ln an angle equal to half a right

angle : having placed the origin of the abscissas in A, make
the abscissa ap = Xy and the appllcate or ordinate pm =^y\
we shall have for the right line, pm = CP = a — .r ; and since

the point m of the right hne falls on the side of those ordi-

nates which are reckoned negative, we have y— — a -^ x,

ory—x + rt = : but, for the circle, we have pm^ = ap . pb,

and BP = 2« — Xy which gives j/* = 2ax — x'y or j/^ + x^ —
2((x — 0. Multiplying these two equations together we ob-

tain the complex equation of the third order,

y^ — y'^x + yx- — x^ + ay^ — 2axy + '6ax^ — Ic^x = 0,

which represents, at once, the circle and the right line. Hence>

we shall find that to the abscissa ap = x^ corresponds three

ordinates, namely, two for the circle, and one for the right

line. Let, for example, x = \ay the equation will become
y"' + iflj/- - \(ry — |-a^ = j whence we first find j/ +^ = 0,

and by dividing by this root, we obtain 3/^— -|-«^=0, the two

roots of which being taken and ranked with the former, give

the three following values oiy.
Vol. III. O I-J/==
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I. .y = -l<7.
II. }j =-r- iaVS.
III. j/ =— jav/3.

We see, therefore, that the whole is represented by one
equation, as if the circle together with the right hne formed
only O le continued curve.

10. This difference between simple and complex curves

being once established, it is manifest that the lines of the

second orJ.er arc either continued curves, or complex lines

formed of two right lines ; for if the general equation have
rational factorr, they must be of the first order, and conse-

quently will denote right lines. Lines of the third order will

be either simple, or complex, formed either of a right line

and a line of the second order, or of three right lines. In

like manner, lines of the fourth order will be continued and
simple, or complex, comprizing a right line and a line of the

third order, or two lines of the second order, or lastly, four

right lines. Complex lines of the fifth and superior orders

vill be susceptible of an analogous combination, and of a

similar enumeration. Hence it follows, that any order what-
ever of lines may comprize, at once, all the lines of inferior

prder, that is to say, that they may contain a complex line of

any inferior orders with one or more riglit lines, or v>ith lines

of the second, third, &c, order ; so that if we sum the num-
bers of each order, appertaining to the simple lines, there will

result the number indicating the order of the complex line.

Def. 9. That is called an hyperbolic leg, or branch of a

curve, which approaches constantly to some asymptote j and
that a pa)-abolic one which has no asymptote.

Art. 11. All the legs of curves of the second and higher

kinds, as well as of the iirst, infinitely drawn out, will be of

either the hyperbohc or the parabolic kind : and these legj

are best knov^m from the tangents. For if the point of con*

tact be at an infinite distance, the tangent of a hyperbolic leg

will coincide with the asymptote, and the tangent of a para*

bolic leg will recede in ififi)utuvi, will vanish and be no where
found. Therefore the asymptote ofany leg is found by seek-

ing the tangent to that leg at a point infinitely distant : and
the course, or way of an infinite leg, is found by seeking th$

position of any right line which is parallel to the tangent
where the point of contact goes off in infiiiitioii : for this right

line is directed the same way with the infinite leg.

Sir Isaac N'cwton's Reduction oj' all Lines of the Third
Order, tofour Cases of J^uatioiis ; with the Ijnumcration

of those lines.

CASE I.
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CASE I.

12. AH the lines ofthe first, third, fifth, and seventh order,
or of any odd order, have at least two legs or sides proceed-
ing on ad infinitiwi, and towards contrary parts. And all lines

of the f/i/rd order have two such legs or branches running out
contrary ways, and towards which no other of their infinite

legs (except in the Cartesian parabola) tend. If the legs are
of the hi/pcrbolic kind, let gas be their asymptote j and to it

let the parallel cbc be drawn, terminated (if possible) at both
ends at the curve. Let this parallel be bisected in x, and
then will the locus of that point x be the conical or common
hyperbola xq, one of whose asymptotes is As. Let its other
asymptote be ab. Then the equation by which the relation

between the ordinate bc =.3/, and the abscissa ab z:: x, is

determined, will always be of this form : viz,

xy"- -{. ey = ax^ -\- bx'^ -{- ex -\- d . . . (L)

Here the coefficients c, a, b, c, d, denote given quantities,

affected with their signs + and — , of which terms any one
may be wanting, provided the figure through their defect does
not become transformed into a conic section. The conical

hyperbola XQ may coincide with its asymptotes, that is, the
point X may come to be in the line ab \ and then the term
+ ey will be wanting.

CASE II.

13. But if the right line cbc cannot be terminated both
ways at the curve, but will come to it only in one point; then
draw any line in a given position which shall cut the asymp-
tote AS in A ; as also any other right line, as bc, parallel to

02 the
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the asymptote, and meeting the curve in the point c ; then

the equation, by which the relation between the ordinate BC
and the abscissa ab is determined, will always assume this

form : viz. xy = ax^ -\- bx' \- ex \- d , . . . (II.)

CASE III.

14. If the opposite legs be of the parabolic kind, draw the

right line CBC, terminated at both ends (if possible) at the

curve, and running according to the course of the legs •, which
line bisect in b : then shall the locus of b be a right line. Let
that right line be ab, terminated at any given point, as A :

then the equation, by which the relation between the ordi-

nate BC and the abscissa ab is determined, will always be of

this form : j/' = ax' -{ bx"^ + ex -^ d . . . . (III.)

CASE IV.

15. If the right line cbc meet the curve only In one point,

and therefore cannot be terminated at the curve at both ends

;

let the point where it comes to the curve be c, and let that

right line at the point b, fall on any other right line given in

position, as AB, and terminated at any given point, as A.

Then will the equation expressing the relation between bc
and AB, assume this form :

y = ax^ + bx^- + ex -{- d , . . . (IV.)

16. In the first case, or that of equation i, if the term ax^

be affirmative, the figure will be a triple hyperbola with six

hyperbolic legs, which will run on infinitely by the three

asymptotes, of which none are parallel, two legs towards each

asymptote, and towards contrary parts j and these asymptotes,

if the term bx^ be not wanting in the equation, will mutually

intersect each other in 3 points, forming thereby the triangle

HdS. But if the term bx- be wanting, they will all converge

to the same point. This kind of hyperbola is called redund-

ant, because it exceeds the conic hyperbola in the number of

its hyperbolic legs.

In every redundant hyperbola, If neither the term ey be

wanting, nor b'^ — 4ac = acs/ci^ the curve will have no dia-

meter j but if either of those occur separately, it will have

only om diameter ; and three^ if they both happen. Such
diameter will always pass through the intersection of two of

the asymptotes, and bisect all right lines which are terminated

each way by those asymptotes, and which are parallel to the

third asymptote.

n. If the redundant hyperbola have no diameter, let the

four roots or values of .r In the equation ax* -f bx^ \- cx"^ +
dx + |e^ = 0, be sought j and suppose them to be ap, a^,

ATI",
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'kif, and A/> (see the preceding figure). Let the ordlnates pt,
arr, ttl, pf, be erected; they shall touch the curve in the points

T, r, 1, ty and by that contact shall give the limits of the curve,

by vi^hich its species will be discovered.

Thus, if all the roots ap, aot, ait \p, be real, and have the
same sign, and are unequal, the curve will consist of three

hyperbolas and an oval ; viz, an inscribed hyperbola as EC ;

a circumscribed hyperbola^ as t^c ; an ambigeneal hyperbola^

(i. e. lying within one asymptote and beyond another) as pt',

arid an oval rl. This is reckoned the first species. Other
relations of the roots of the equation, give 8 more different

species of redundant hyperbolas without diameters; 12 each
with but one diameter ; 2 each with three diameters ; and 9
each with three asymptotes converging to a common point.

Some of these have ovals, some points of decussation, and in

some the ovals degenerate into nodes or knots.

18. When the term a.v^ in equa. i, is negative, the figure

expressed by that equation, will be a deficient or defective

hi/perhola ; that is, it wuU have fewer legs than the complete
conic hyperbola. Such is the marginal

figure, representing Newton's 33d spe-

cies ; which is constituted of an angui-

neal or serpentine hyperbola, (both legs

approaching a common asymptote by /j {^\f
jneans of a contrary flexure,) and a con- \/5^^ p^—"vf

jugate oval. There are 6 species of de-

fective hyperbolas, each having but one
asymptote, and onlytwo hyperbolic legs,

running out contrary ways, ad injini-

tum ; the asymptote being the first and principal ordinate.

When the term ey is not absent, the figure will have no
diameter ; when it is absent, the figure will have one diame-
ter. Of this latter class there are 7 different species, one of
v*'hich, namely Newton's 40th species, is exhibited in the

margin.

19- If, In equation i, the term ax' be
wanting, but bx'^ not, the figure ex-

pressed by the equation remaining, will

be a parabolic hyperbola, having two
hyperbolic legs to one asymptote, and
two parabolic legs converging one and
the same way. When the term ey is

not wanting, the figure will have no
diameter; if that term be wanting, the

figure will have one diameter. There are 7 species apper-

taining to the former case ; and 4 to the latter.

20. When,
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20. When, in equa. i, the terms ox'^, bx^^ are wanting, or

when that equation becomes xif + e)j = cx + dy it expresses

a figure consisting of three hyperbolas opposite to one an-

otlier, one lying between the parallel asymptotes, and the

other two without : each of these curves having three asymp-
totes, one of which is the first and
principal ordinate, the other two pa-

rallel to the abscissa, and equally

distant from it ; as in the annexed
figure of Newton's 60th species.

Otherwise the said equation ex-

presses tvi'-o opposite circumscribed

hyperbolas, and an anguineal hyper-

bola between the asymptotes. Under
this class there are 4 species, called

by Newton llyperholmme ofan hyperbola. By hyperbolismas

of a figure he means to signify when the ordinate comes out,

by dividing the rectangle under the ordinate of a given conic

section and a given right line, by the common abscissa.

21. When the term cx'^ is negative, the figure expressed

by the equation xy'^ +eij z=z — cx^ + tf, is either a serpentine

hyperbola, having only one asymptote, being the principal

ordinate; or else it is a conchoidal l^gure. Under this class

there are 3 species, called Hijperbolismte of an ellipse.

22. When the term cx^ is absent, the equa. xif + ey :=: d,

expresses two hyperbolas, lying, not in the opposite angles of

the asymptotes (as in the conic hyperbola), but in the adja-

cent angles. Here there are only 2 species, one consisting of

an inscribed and an ambigeneal hyperbola, the other of two
inscribed hyperbolas. These two species are called the //y-

perbolisyna of a parabola.

23. In the second case of equations, or that of equation ii,

there is but one figure ; which has four infinite legs. Of
these, two are hyperbolic about one asymptote, tending to-

wards contrary pans, and tv/o converging parabolic legs,

mak'ng with the former nearly the figure of a trident, the

familiar name given to this species. This is the Cartesian

p^r bola, by which equations of 6 dimensions are sometimes

constructed : i is the 66th species of Newton's enumeration.

24. The third case of equations, or

equa. in, expresses a figure having two ,^\

parabolic legs runningout contrary ways : t[ t) 1 (t

c-y'

of these there are 5 different species, \_J
-"^

V^ ^'

called diverging or hell-form parabolas ;

"""—--^
of which '2 have ovals, 1 is nodate, 1

punctate, and 1 cuspidate. The figure shows Newton's 6Tth
species y
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for every different value of x there are « values of^, it will

commoily happen tlxat the ordinate will cut the curve in n or

in 11 — % V — 4, &c, points, accordidg as the equation has

9?, or n — 2, 71 — 4, &c, possible roots. It is not however to

be inferred, that a right line will cut u curve oi n dimen.sions,

in n, w — 2, n — 4, &c, points, only ; for if this were the

case, a line of the 2d order, a conic section for instance, co: Id

only be cut b/ a right line in two points ;—but this is mani-

festly incorrect, for though a conic parabola w'l he cut in two
points by a right Kne oblique to the axis, yet a right line pa-

rallel to the axis can only cut the curve in one point.

29. It is true in general, that lines of the n order cannot

be cut by a righi line in more than n points ; but it does not

hence follow, that any right line whatever will cut in n points

e^ ery line of that order ; it may happen that the number of

intersections is ?i — 1, n — 2, n — 3, '<c, to n — n. The
number ot intersections that any right line whatever makes
with a given curve line, cannot therefore determine the order

to which a curve line appertains. For, as Euler remarks, if

the number of inLersectior'S be = 7Z, it does not follow that

the curve belongs to the n order, but it may be referred to

some superior order ; indeed it may happen that the curve is

not algebraic, but transcendental. This case excepted, how-
ever, Euler contends that we may always affirm positively

that a curve line which is cut by a right line in n points, can-

not belong to an order of lines inferior to n. Thus, when a

right line cuts a curve in 4- points, it is certain that the curve

does not belong to either the second or third order of lines

;

but whether it be referred to the fourth, or a superior order,

or v/hether it be transcendental, is not to be decided by
analysis.

30. Dr. Wa-ing has carried this enquiry a step further than

Eulei-, and has demonstrated that there are curves ofany num-
ber of odd orders, that cut a right line in 2, 4, 6, &c, points

only; and of any number of even orders that cut a right line

in 3, 5, 7, &c, points only; whence this author likewise in-

fers, that che order of the curve cannot be announced from
the number of points in which it cuts a right line. See his

Proprietates . igebraicarum Curvarum.
3i. . ery geometrical curve being continued, either re-

turns into itself, or goes on to an infinite distance. iVnd if

any plane curve has two infinite branches or legs, they join

one another either at a finue, or at an infinite distance.

32. In any cm ve, if tangents be drawn to all points of the
curve ; and if vhey always cut the abscissa at a finite distance

from its origin ; that curve has an asvmptote, otherwise not.

33. A
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.^3. A line of any order may have as many asymptotes as It

has dimer ions, and no more.

34. An asymptote may intersect the curve in so many
points abating two, as t'le equation of the curve has dimen-
sions. 1 hus, in a conic section, which is the second order

of hnes, the asymptote does not cut ihe curve at all ; in the

thirc. order it can only cut it in one point j in the fourth

order, in two points ; and so on.

33. If a curve have as many a'symptotes, as it has dimensions,

and a r'ght line be drawn to cut them all, the parts of that

measured from the asymprotes lo the curve, will together be
equal to the parts measured in the same direction, from the

curve to the a<^ymptotes.

36. -Ir a curve of 7? dimensions have n asymptotes, then the

content of the /. abscissas will be to the content of the n or-

dinates, in the same ratio in the curve and asymptotes ; the

sumof their 72 subnormals, to ordinates perpendicular to their

abscissas, will be equal to the curve and the asymptotes ; and
they will have the same certnd and diametral curves.

37. If two curves of « and m dimensions have a common
asymptote; or the terms of the equations to the curves of the

greatest dimensions have a common divisor; then the curves

cannot intersect each other in 7i X in points, possible or im-
possible. If the two curves have a common general centre,

and intersect each other in w x 7)i points, then the sum of
the affirmative abscissas, &c, to those points, will be equal to

the sum of the negative ; and the sum of the 7i subnormals

to a curve which has a general centre, will be proportional

to the distance from that centre.

35. Lines of the third, fifth, seventh, &c order, or any
odd number, have, as before remarked, at least two infinite

legs or branches, running contrary ways; while in lines of the

second, fourth, sixth, or any even number of dimensions, the

figure may return into itself, and be contained within certain

limits.

39. If the right lines Ap, pm, forming a given angle apm,
cut a geometrical line of any order in as many points as it

has dnnensions, tlie product of the segments of the first ter-

minated by p and the curve, will always be to the product of
the segmeius of the latter, terminated by the same point and

the curve, in an invariable ratio.

40. With respect to double, triple, quadruple, and other

multiple points, or the points of intersection of 2, 3, 4, or

more branches of a curve, their nature and number may bo

estimated by means of the following priiiciples. 1 . A curve of

the 71 order is determinate when it is subjected to pass through

the
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the number 1 points. 2. A curve of the n

order cannot intersect a curve of the 7?i order in more than
vm points.

Hence it follows that a curve of the second order, for ex-

ample, can alvi'ays pass through 5 given points (not in the

same rigat line), and cannot meet a curve of tiie m order in

more than nvi points ; and it is impossihle that a curve of the

m order should have 5 points whose degrees of multiplicity

make together more than '2jn points. Thus, a line of the

fourth order cannot have four double points; becau-e the line

of the second order which would pass through these four

double points, and through a fifth simple point of the curve

of the fourth dimension, would meet 9 times ; which is im-

possible, since there can only be an intersection '2 x 4 or 8

times.

For thesame reason, a curve lineofthe.5thordercannot,with

one triple point, have more than three double points : and in

a similar manner we may reason for curves of nigher orders.

Again, from the known proposition, that we c?n always

make a line of the third order pass through nine points, and
that a curve of that order cannot meet a curve of the w order

in mere than 3>ii points, we may conclude that a curve of the

m order cannot have nine points, the degrees of multiphcity

of which jnake together a number greater than 3m. Thus,
a line of the fifih order cannot have more than 6 double

points ; a line of the 6th order, which cannot have more than
one (quadruple point, cannot have with that quadruple point

more than 6 double points ; nor uiih two triple points more
than 5 double points ; mor even with one triple point more
than 1 double points. Analogous conclusions obtain with
respect to a line of the fourth order, which we may cause to

pass through 14 points, and which can only meet a curve of
the )n order in im points, and so on.

41. The properties of curves of a superior order, agree,

under certr.in moditications, with those of all inferior orders.

For though some line or lines become evar escent, and others

become infinite, some coincide, others become equal ; some
points coincide, and others are removed to an infinite di-

stance; yet, under these circumstances, the general properties

still hold good with regard lO the remaining quantities ; so

that whatever is demonstrated generally of any order, holds
true in the inferior j)rders : and, on the contrary, there is

hardly any property of the iiiferior orders, but there is some
similar to it, in the superior ones.

For^ as in the conic sections, if two parallel lines are drawn
to
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to terminate at the section, the right line that bisects these

will bisect all other lines parallel to them ; and is therefore

called a diameter of the figure, and the bisected lines ordi-

nateSf and the intersections of the diameter with the curve

•vertices; the common intersection of all the diameters the

centre; and that diameter which is perpendicular to the or-

dinates, the vertex. So likewise in higher curves, if two
parallel lines be drawn, each to cut the curve in the number
of points that indicate the order of the curve ; the right line

that cuts these parallels so, that the sum of the parts on one

side of the line, estimated to the curve, is equal to the sum
of the parts on the other side, it will cut in the same man-
ner all other lines parallel to them that meet the curve in the

same number of points ; in this case also the divided lines are

called ordinatcSy the line so dividing them a diameter, the

intersection of the diameter and the curve i erfices; the com-
mon intersection of two or more diameters the centre; the

diameter perpendicular to the ordinates, if there be any such,

the axis; and when all the diameters concur in one point,

that is the general centre.

Again, the conic hyperbola, being a line of the second

order, has two asymptotes ; so likewise, that of the third

order may have three ; that of the fourth, four: and so on:

and they can have no more. And as the parts of any right line

between the hyperbola and its asymptotes are equal; so like-

wise in the third order of lines, if any line be drawn cutting

the curve and its asyinptotes in three poii>ts; the sum of two
parts of it falling the same way from the asymptotes to the

curve, will be equal to the part falling the contrary way from,

the third asymptote to the curve ; and so of higher curves.

Also, in the conic sections which are not parabolic : as the

square of the ordinate, or the rectangle of the parts of it on
each side of the diameter, is to the rectangle of the parts of

the diam.eter, terminating at the vertices, in a constant ratio,

viz, that of the latus rectum, to the transverse diameter. So
in non-parabolic curves of the next superior order, the solid

under the three ordinates, is to the solid under the three ab-

scissas, or the distances to the three vertices ; in a certain given

I'atio. In which ratio it there be taken three lines propor-

tional to the three diameters, each to each ; tl;en each of these

three lines may be called a latus rectum, and each of the cor-

responding diameters a transverse dioneter. And, in the

common, or Apollonian parabola, which has but one vertex

for one diameter, the rectangle of the ordinates is equal to

the rectangle of the abscissa and latus rectum : so, in those

curves of the second kind, or lines of the third kind, which

have
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have only two vertices to the same diameter, the solid under
the three ordinates, is equal to the solid under the two ab-

scissas, and a given line, which may be reckoned the latus

rectum.

Lastly, since in the conic sections where two parallel lines

terminating at the curve both ways, are cut by two other pa-
rallels likewise terminated by the curve ; we have the rect-

angle of the parts of one of the first, to the rectangle of the
parts of one of the second lines, as the rectangle of the parts

of the second of the former, to the rectangle of the parts of
the second of the latter pair, passing also through the com-
mon point of their division. So, when four such lines are

drawn in a curve of the second kind, and each meeting it in

three points ; the solid under the parts of the first line, will

be to that under the parts of the third, as the solid under the

parts of the second, to that under the parts of the fourth.

And the analogy between curves of different orders may be

carried much further : but as enough is given for the objects

of this work ; we shall now present a few of the most useful

problems.

PROBLEM I.

Knowing the Characteristic Property, or the Manner of

Description of a Curve, to find its Equation.

This in most cases will be a matter of great simplicity;

because the manner of description suggests the relation be-

tween the ordinates and their corresponding abscissas ; and
this relation, when expressed algebraically, is no other than

the equation to the curve. Examples of this problem have

already occurred in sec. 4 ch. i, of this volume : to which the

following are now added to exercise the student.

Ex. 1. Find the equation to the cissoid of Diodes;
whose manner of description is as below.

From any two points p, s, at equal

distances from the extremities A, b, of

the diameter of a semicircle, draw st,

PM, perpendicular to AB. From the

point T where ST cuts the semicircle,

draw a right line at, it will cut pm in

M, a point of the curve required.

Now, by theor. 87 Geom. AS . SB = ST*; and by the con-

struction, AS . SB rr AP . PB. Also the similar triangles APM,

AST, give AP : PM : : AS : sT ; : FB : sr =—^— . Conse-

quently
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quently st^= — = ap . pb ; and lastly = AP . ap ,

or PA^ = PB . PM^. Hence, if the diameter ab = <;?, A? = r,

PM =.y, the equation is x^ =y\d— x).

The complete cissold will have another branch equal and
similar to amq, but turned contrary ways; being drawn by
means of points t' falling in the other half of the circle. But
the same equation will comprehend both branches of the

curve ; because the square of — _y, as well as that of + 3/, is

positive.

Cor. All cissoids are similar figures; because the abscissae

and ordinates of several cissoids will be in the same ratio,

when either of them is in a given ratio to the diameter of its

generating circle.

Ex. 2. Find the equation to the logarithmic curve, whose
fundamental property is, that when the abscissas Increase or

decrease in arithmetical progression, the corresponding ordi-

nates increase or decrease in geometrical progression.

Ans. 1/ = a*, a being the number whose logarithm is 1, in

the system of logarithms represented by the curve.

Ex. 3, Find the equation to the curve called the TVitch^

whose construction is this : a Gemlclrcle whose diameter Is

A B being given ; draw, from any point P in the diameter, a

perpendicular ordinate, cutting the semicircle In d, and ter-

minating in M, so that ap : pd : : ab : PiM ; then is m always

a point in the curve. ^^s.y=dv'.d-.

PROBLEM II.

Given the Equation to a Curve, to Describe It, and trace Its

Chief Properties.

The method of effecting this is obvious : for any abscissas

being assumed, the corresponding values of the ordinates be-

come known from the equation ; and thus the curve may be
traced, and its limits and properties developed,

Ex. 1. Let the equation 3/^ = ci^x, or y =,^a'^x, to a line

of the third order, be proposed.

First, drawing the two Indeilnite lines

BH, DC, to make an angle bag equal to

the assumed angle of the co-ordinates

;

let the values of x be taken upon AC,
and those of y upon ab, or upon lines

parallel to ab. Then, let It be enquired
whether the curve passes through the
point A, or not. In order to this, we
must ascertain what 7/ will be when

xzzO
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.r= : and in that case ?/ =l/(a- x 0), that h,i/= 0. There-
fore the curve passes through A. Let it next be ascertained

whether the curve cuts the axis AC in any other point;. in

order to which, find the value of x when j/= : this will be
j^a^x = 0, or X =: 0. Consequently the curve does not cut

the axis in any other point than A. Make .r = ap = {ay

i\nd the given equa. will become j/ n^itf^ zz a^\. There-
fore drav/ PM parallel to ah and equal to fl^/^, so will m be
a p6int in the curve. Again, make .r rr ac = a ; then the
equation will give y =^a^ -^ a. Hence, drawing cn parallel

to AB, and equal to AC or ff, N will be another point in the

curve. And by assuming other values ofj/, other ordinates^

and consequently other points of the curve, may be obtained.

Once more, making x- infinite, or :r = oo , we shall have ?/=

l/{a'- X go) ; that is, j/ is infinite when x is so ; and therefore

the curve passes on to infinity. And further, since when x
is taken = 0, it is also 3/ = 0, and when x z=. 00, it is also

7/ =z 00 ; t]\e curve Vv'ill have no asymptotes that are parallel

to the co-ordinates.

Let the riglit line an be drawn lo cut pm Cproduced if ne-

cessary) in s. Then because CN=rAc, it will be ps— Ap rr ~a.

But PM = al/'^ = yal/\y which is manifestly greater than \a ;

so that PM is greater than ps, and consequently the curve is

concave to the axis AC.

Now, because in the given equation ?/' = fr.r the exponent
of X is odd, when x is taken negatively or on the other side

of A, its sign should be clianged, and the reduced equation

will then be y = y'— «'.r. Here it is evident tliat, when the

values of .r are taken in the negative Avay from A towards i>,

but equal to those already taken the positive way, there will

result as many negative values of 7/, to fall below ad, and each

equal to the corresponding vahies of ?/, taken above Ac.

Hence it follows that the branch am'n' will be similar and
equal to the branch amn ; but contrarily posited.

TjX. C. Let the Icmniscate be proposed, which is a line of

the fourth order, denoted by the equation a\y^ = ci'-x'^ — x'^.

In this equation we have y = + — V(a^ — .r^);

where, when x = 0, y ~ 0, therefore the curve

passes through a, the point from which the va-

lues of X are measured. When .r = ±0, then
1/zzO'y therefore the curve passes through B
and c, supposing ab and AC each = ±a. If .r

were assumed greater than a, the value of y
v/ould become imaginary 5 therefore no part of
the curve lie'; beyond E or c. When x zz {a,

then



' EQUATIONS TO CUnVES. 207

then ?/r=^\'^rf'— \a' =: Ui\/3 ; which is the value of the

semi-ordinate PM \Yhen ap = JAB. And thus, by assuming

other values of x, other values of j/ may be ascertained, and
the curve described. It has obviously two equal and similar

parts, and a double point at A. A right line may cut this

curve in either 2 points, or in 4 : even th.e right line bag is

conceived to cur it In 4 points ; because the double point A
is that in which two branches of the curve, viz, UAp, and
nAGL, are intersected.

E,i\ 3. Let there be proposed the Conchoid of the ancients,

which is a line of the fourth order defined by the equation

{a- - x") . (x - by- = xy-, or J/
= ± —̂ — v'(a' — a").

Here, if .r = 0, then j/ becomes in-

finite ; and therefore the ordinate at

A (the origin of the abscissas) is an
asymptote to the curve. If ab = 6,

and p be taken between A and R, then
shall PM and p}n be equal, and lie on
different sides of the abscissa ap. If

X =z I), then the two values o£y vanish,

because x — h = 0, and consequently

the curve passes through b, having

there a double point. It ap be taken

greater than ab, then will there be

two values of j/, as before, having contrary signs; that value
which was positive before being now negative, and vice versa.

But if AD be taken = a, and p comes to d, then the two va-

lues of J/ vanish, because in that case »/{ii-' — x') = 0. If ap
be taken greater than ad or a, then cr — x^' becomes negative,

and the value of j/ impossible : so that the curve does not go
beyond D.

Now let X be considered as negative, or as lying on the

side of a towards c. Then cV rz ± ^

-v'C"^ — ^''^' Here

if X vanish, both these values ofj/ become infinite ; and con-
sequently the curve has' two iudennite arcs on e^ch side the
asymptote or directrix ay. If .r increase, i/ manifestly dimi-
nishes j and when .r — ci, then ij vanishes : that is, if AC n AD,
then one branch of the curve passes throiigh. c, while the
other passes through D. Here also, if x be taken greater
than a, y becomes imaginary ; so that no part of the curve
can be found beyond c.

If a rr by the curve will have a cusp in B, the node between
B and D vanishing in that case. If a be less than h^ then b
will become a conjugate point.

In
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In the figure, u'cni' represents what is termed the superior

conchoid, and gb/;?dmb;// the injerior conchoid. The point

B is called the pole of the conchoid ; and the curve may be

readily constructed by radial lines from this point, by means

of the polar equation s r: ± a. It will merely be re-
' * COS. ^

•'

tjuisite to set off from any assumed point a, the distance

Aii=-b \ then to draw through b a right line JWLm' making
any angle <p with cb, and from L, the point, where this line

cuts the directrix ay (drawn perpendicular to cb) set offupon
it lm' = hvi = a ; so shall m' and m be points in the superior

and inferior conchoids respectively.

Ex. 4-. Let the principal properties of the curve whose
equation is y.v" =. a" +

', be sought ; when )i is an odd num-
ber, and when n is an even number.

Ea:. 5. Describe the line v/hich is defined by the equation

Tj/ + ai/ -\- cy = be -{- bx.

Ex. 6. Let the Cardioide, whose equation \sy^ — G(n/^
(2.r* + JOf^ij/' - {6(Lv- + 8a0j/ + {^^^ + 3a'>r- = 0, be

proposed.

Ex. 7. Let the Trident, whose equation is xi/ zz ax' {-

hx^ + ex 4- dy be proposed.

E.V. 8. Ascertain whether the Cissoid and the Witch

y

whose equations are found in the preceding problem, have

asymptotes.

f PROBLEM III.

To determine the Equation to any proposed Curve Surface.

Here the required equation must be deduced from the law

or manner of construction of the proposed surface, the refer-

ence being to three co-ordinates, commonly rectangular ones,

the variable quantities being x, y, and z. Of these, two,

namely .r and y, will be found in one plane, and the third *

will always mark the distance from that plane.

Ex, 1. Let the proposed surface be that of a sphere, fnc.

The position of the fixed point a,

which is the origin of the co-ordinates

AP, PM, MN, being arbitrary; let it be
supposed, for the greater convenience,
that it is at the centre of the sphere.

Let MA, NA, be drawn, of which the
latter is manifestly equal to the radius

of the sphere, and may be denoted by r. Then, if AP = .r,

PM = y, MN = : ; the right-angled triangle apm will give
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AM* = AP* -f PM^ = vt'^ +.V^- ^^ ^^^^ manner, the right-

angled triangle amn, posited in a plane perpendicular to the

former, will give AN" rz am^ + mn\ that is, 7-^ = x- +y^-{-z^ ;

or 2* = >'" — .V' —
J/',

the equation to the spherical surface,

as required.

Scholium. Curve surfaces, as well as plane curves, are

arranged in orders according to the dimensions of the equa-

tions, by which thev are represen.ted. And, in order to de-

termine the properties of curve surfaces, processes must be

employed, similar to those adopted when investigating the

properties of plane curves. Thus, in like manner as in the

theory of curve lines, the supposition that the ordinate^ is

equal to 0, gives the point or points where the curve cuts its

axis ; so, with regard to curve surfaces, the supposition of

3 = 0, will give the equation of the curve made by the in-

tersection of the surface and its base, or the plane of the co-

ordinates -i',^. Hence, in the equation to the spherical sur-

face, when z =. 0, we have x* + y^ =: r% which is that of a:

circle whose radius is equal to that of the sphere. See p. li I

.

Ex. 2. Let the curve surface proposed' be that produced

by a parabola turning about its axis.

Here the abscissas x being reckoned from the vertex or

summit of the axis, and on a plane passing through that axis;

the two other co-ordinates being, as before, y and z ; and
the parameter of the generating parabola being /; : the equa-

tion of the parabolic surface will be found to be z' -h j/^ —
px = 0.

Now, in this equation, if z be supposed = 0, we shall have
y^:=zp.v, which (pa. 31) is the equation to the generating
parabola, as it ought to be. If we wished to know what
would be the curve resulting from a section parallel to that

which coincides with the axis, and at the distance a from it,

we must put z =z a; this would give j/^ =: px — cr, which is

still an equation to a parabola, but in which the origin of the
abscissas is distant from the vertex before assumed by the

<juantity —

.

E.v. 3. Suppose the curve surface of a right cone were
proposed.

Here we may most conveniently refer the equation of the
surface to the plane of the circular base of the cone. In this

case, the perpendicular distance of any point in the surface

from the base, will be to the axis of the cone, as the distance

of the foot of that perpendicular from the circumference

Vol. III. P (measured
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(measured on a radius), to the radius of the base ; that is, if

the values of x be estimated from the centre of the base, and
r be the radius, Z will vary as r — \/(^* + y^). Conse-

qiienily, the sin^.plest equation of the conic surface, will be

z ^r 2=— ^{x' -j- If), or r' — 2rz + z* = jr'' + 3/^,

Now, from this, the nature of curves formed by planes cut-

ting the cone in different directions, may readily be inferred.

Lee it be supposed, first, that the cutting plane is incliiied to

the base of a right-angled cone in the angle of 45°, and passes

through its centre : then will z ~ x, and this value of z sub-

stituted for it in the equation of the surface, v,ill give r^ —
Qrx =j/'~i which is the equation of the projection of the curve

on the plane of the cone's base : and this (art. 3 of this chap.)

is manifescly an equation to a parabola.

Or, taking the thing more generally, let it be supposed that

the cutting plane is so situated, that the ratio of T to z shall

be that of 1 to m : then will nix = z, and w"x^ = z\ These
substituted for z and 2^ in the equation of the surface, will

give, for the equation of the projection of the section on the

plane of the base, r' — 2mx + (w" — l)x' -rz y^. Now this

equation, if m be greater than unity, or if the cutting plane

pass between the vertex of the cone and the parabolic sec-

tion, will be that of an hyperbola : and if, on the contrary,

the cutting plane pass between the parabola and the base, i. e.

if ?;/ be less than unity, the term [m^— 1 )x^ will be negative,

when the equation will obviously designate an ellipse.

Schol. It might here be demonstrated, in a nearly simi-

lar manner, that every surface formed by the rotation of any

conic section on one of its axes, being cut by any plane what-

ever, will always give a conic section. For the equation of

such surface will not contain any power of ^,,y> or z, greater

than the second ; and therefore the substitution of any values

of z in terms of x or of j/, will never produce any powers of

a? or of j/ exceeding the square. The section therefore must
be a line of the second order. See, on this subject, Hutton's

Mensuration, part iii, sect. 4.

JLx. 3, Let the equation to the curve surface be syz = a'.

Then will the curve surface bear the same relation to the

solid right angle, which the curve line whose equation is

xy = a^ bears to the plane right angle. That is, the curve
surface will be posited between the three rectangular faces

bounding such solid right angle, in the same manner as the

equilateral hyperbola is posited between its rectangular asymp-
totes. And in like manner as there may be 4 equal equila-

teral
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teral hyperbolas coip.prehended between the same rectangular

asymptotes, when produced both ways from the angular point;

so there may be 6 equal hyperboloids posited within the 6

solid right angles which meet at the same summit^ and all

placed between the same three asymptotic planes.

SECTION II.

On the Construction of Equations.

PROBLEM I.

To Construct Simple Equations, Geometricallyo

Here the sole art consists in resolving the fractions, to

which the unknown quantity is equal, into proportional terms

;

and then constructing the respective proportions, by means of

probs. S, 9, 10, and 27 Geometry. A few simple examples

will render the method obvious.

1. Let ;r =: — ; then c : a : : h : x. Whence x may be

found by constructing according to prob. 9 Geometry.

2. Let X — ^. First construct the proportion d:a%:b%

^ , which 4th term call g j then i" = ^ ; or e : c : : g : x.

3. luetx — ^—^—. Then, since a*-^'= (a+6)x(tf—6);

it will merely be necessary to construct the proportion

c : a -\- b :: a — b \ x.

4. Let X — ;— . Fmd, as m the first case, g =: —- ^
ad ^ a

~, and A = -^, so that -^ may = - . Then find by the
ad a ad ^ u

he
first case i zz —. So shall ar==:£" — /, the difference of those

lines, found by construction.

5. Let X = ~ "

. First find ~^. the fourth propor-
aj + be b ' * '

tional to b, a andy, which make = h. Then x zz. -r--— j

or, by construction it will be /» + c : a — ^ : ; a : x.

6. Let X = ~i^. Make the right-angled triangle Ahc such

P 2 that
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that the leg AB=a, bc = ^; then ac= -v/Cau'

_j_ BC*) = v/(fl^ -t b% by th. 34 Geom. Hence

X z= . Construct therefore the proportion

<^ : AC : : AC : >r, and the unknown quantity will

be found, as required.

a^ + cd
7. Let 1 =

ft + c
First, find CD a

£ li

mean proportional between ac = c, and

CB = fJ, that is, find CD = \/cd. Then
make CE — a, and join de, which will

evidently be = \/{a^ + cd). Next on

any line EG set off EF =. h -^ c, EG =: ED; and draw GH
parallel to fd, to meet de (produced if need be) in h. So
shall EH be = j:, the third proportional to h + c, and
^{<f -j- cd), as required.

Note. Other methods suitable to different cases which
may arise are left to the student's invention. And in all

constructions the accuracy of the results, will increase with

the size of the diagrams ; within convenient limits for

operation.

PROBLEM II.

To Find the Roots of Quadratic Equations by Construction

«

In most of the methods commonly
given for the construction of quadratics,

it is required to set off the square root

of the last term ; an operation which

can only be performed accurately when
that term is a rational square. We shall

here describe a method which, at the

same time that it is very simple in prac-

tice, has the advantage ofshowing clearly

the relations of the -roots, and of dividing the third term int©

two fiictors, one of which at least may be a whole number.

In order to this construction, all quadratics may be classed

under 4 forms : viz,

1. x^ { ax ~ he "=. 0.

2. x^ — ax — he = 0.

o. x^ -\- ax -\- be :^ 0.

4. x^ — ax -\- be = 0.

1. One general mode of construction will include the first

two of these forms. Let x^ ip ax— be zz 0, and b be greater

than c. Describe any circle abd having its diameter not less

than the given quantities a and b — c, and within this circle

inscribe
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inscribe two chords, ab — Uy ad zz b - c, both from any

common assumed point a. Then, produce ad to F so that

DF ~ c, and about the centre c ofthe former circle, wii the

radius CF, describe another circle, cutting the chords ad, ab,

produced, in f, e, G, h : so shall aG be the iffi.imatfve and
AH the negative root of the aquation X' + ax — be zz. , and

contrariwise AG will be the negative and ah the affirmative

root of the equation x^ — ax — be zz 0.

For, af or AD -f- DP r= ^, and DF or ae ~ c ; and, making

AG or BH ~ X, we shall have ah — a h -^ : and by tue pro-

perty of the circle EGFH (th^ior. 61 Geom.> the rectangle

EA . AF =:= GA . AH, or bc zz {a -\- x)xy or again by transpo-

sition x^ + ax — be zz 0. Also if ah be = - X; we shall have

AG or BH or AH — AB zz— X — a: and conseq. ga . ah zz.

x^ + axy as before. So that, whether AG be =: jt, or

AH zz— X, we shall always have x^ -{- ax -^ be zz 0. And
by an exactly similar process it may be proved that AG is the

negative, and ah the positive root of x'- — ax — be zz 0.

Co7\ In quadratics of the form x"^ + ax — be zz 0, the

positive root is always less than the negative roo,t ; and in those

of the form z^ ~ ax — be zz 0, the positive root is always

greater than the negative one.

2. The third and fourth cases also are

comprehended under one method ofcon-

struction, with two concentric circles. Let
jr^ ^ flx + 3c — 0. Here describe any

circle Abd, whose diameter is not less than

«ither of the given quantities a and b + c-,

and within that circle inscribe two chords

AB — Oy AD zz b -\- c, both from the same
point A. Then in ad assume DF zz c, and about c the centre

of the circle abd, with the radius cf describe a drcle, cutting

the chords ad, ab, in the points F, e, G, H : so shall AG, ah,

be the two positive roots of the equation ^* — ax -{ be zz 0,

and the two negative roots of the equation x'+ ax + be = 0.

The demonstration of this also is similar to that of the first

case.

Cor. 1. If the circle whose radius is CF just touches the

chord AB, the quadratic will have two equal roots; which

can only happen when -^a^ = be.

Cor. 2. If that circle neither cut nor touch the chord ab,

the roots of the equation will be imaginary ; and this will

always happen, ir these two forms, when be is greater

fehan ~a^

PROBLEM
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PROBLEM III.

To Find the Roots of Cubic and Biquadratic Equations, by
Construction.

1

.

In finding the roots of any equation, containing only
one unknown quantity, by construction, the contrivance con-

sists chiefly in bringing a new unknown quantity into that

equation ; so that various equations may be had, each con-
taining the two unknown quantities ; and further, such that

any two of them contain together all the known quantities of

the proposed equation. Then from among these equations

two of the most simple are selected, and their corresponding

loci constructed ; the intersection of those loci will give the

roots sought.

Thus it will be found that cubics may be constructed by
two parabolas, or by a circle and a parabola, or by a circle

and an equilateral hyperbola, or by a circle and an ellipse,

he. and biquadratics by a circle and a parabola, or by a

circle and an ellipse, or by a circle and an hyperbola, &c.

Now, since a parabola of given parameter may be easily con-

structed by the rule in cor. 2 th. 4 Parabola, we select the

circle and the parabola, for the construction of both biqua-

dratic and cubic equations. The general method applicable

to both, will be evident from the following description.

2. Let m" Am'm be a parabola whose
axis is AP, m"m'gm a circle whose cen-

tre is c and radius CM, cutting the pa-

rabola in the points M, m', m", m'":

from these points draw the ordinates

to the axis MP, m'p', m"p", m"'p"'; and
from c let fall CD perpendicularly to

the axis ; also draw CN parallel to the

axis, meeting pm in N. Let AD = a,

DC = ^, CM = n, the parameter of the

parabola = /?, A~p — x, pm = y. Then (pa. Zl) px = j/*

:

also CM^ = CN^ -f- NM% or n'^ = {x ^ tif -}- (j/ ^ hf ; that

is, x"^ + 2ax -|- a* + j/^ ± 2bi/ + b'^ =. wS Substituting in

this equation for .r, its value -, and arranging the terms ac-

cording to the dimensions ofj/, there will arise

y ± {2pa -\-p'-\y'- ± 2bp\i/ 4- («^ + ^^ - n~)p'- = 0,

a biquadratic equation, whose roots will be expressed by the

ordinates pm, p'm', p"m", p"'m"', at the points of intersection

of the given parabola and circle.

3. To make this coincide with any proposed biquadratic

whose second term is taken away (by cor. theor. 3) ; assume
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y^ ~ ^y* + T'y — s = O, Assume also /J = 1 ; then com-
iparing the terms of the two equations, it will be, 2a — 1 = y,

or a=z '^-, - 2^ = r, or ^ = Zl. c^ + 6^_ w^ = _ ^, or

w^ = «^ + ^J*^ + .», and consequently w = -/(^^ + 6' + s).

Therefore describe a parabola whose parameter is 1, and in

the axis take ad =. ?-^— : at right angles to it draw dc and

=: — 1^ ; from the centre c, with the radius \/{a- -\-b^ \- s),

describe the circle m"m'gm, cutting the parabola in the points
M, m', m", m'"; then the ordinates pm, p'm', p"m", v"\i"i
will be the roots required.

^

Nute. This method, of making /> r: 1, has the obviou?

advantage of requiring only one parabola for any number of

biquadratics, the necessary variation being made in the radius

of the circle.

Cor. 1. When dc represents a negative quantity, the

ordinates on the same side of the axis with c represent the

negative roots of the equation ; and the contrary.

Cor. 2. If the circle touch the parabola, two roots of the

equation are equal ; if it cut it only in two points, or touch it

in one, two roots are impossible ; and if the circle fall wholly
within the parabola, all the roots are impossible.

Cor. 3. If a* + ^' = jfj or the circle pass through the

point A, the last term of the equation, i. e. (a^+6^— n^)/)^=:Oj

•and therefore j/'* ± {%pci 4- p )y~ ± 2bp-y =z 0, or

i/^ ± (2pa + p-)y ± 2bp^ =; 0. This cubic equation may-

be made to coincide with any proposed cubic, ..anting its

second term, and the ordinates ?.m, p"m', p" m", are its roots.

Thus, ifthe cubic be expressed generally byj/^±i/j/±5=0.

By comparing the terms of this and the preceding equation,

we shall have ± 2pa + jd^ = ± gr, and ± Q.bp'^ — ± ^» or

^ a := ip =p -rr-, and Z> = ± -—. So that, to construct a

cubic equation, with tltlj given parabola, whose halfparameter

is AB (see the preceding figure) : from the point b take, in

the axis, (forward if the equation have — q^ but backward if

q be positive) the line bd = — ; then raise the perpendicular

X)C = — , and from c describe a circle passing through the

vertex A of the parabola ; the ordinates pm, &c, drawn from

the points of intersection of the circle and parabola, will be

the roots required.

PROBLEM
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PROBLEM IV.

To Construct an Fquation of any Order by means of a Locus

of the same Degree as the l quation proposed, and a Right

Line.

As the genera:! method is

the same in all equaiions, let

it be one of the 5th degree, as

x^ — bx^ -\- acx^ — a-dx~ + u'ex

— a*f— 0. Let the last term

a'/be iransposedi and, taking

one of the linear divisors, y",

of the last term, make it equal

to 2, for eKa nple, and divide the equation by a*
-y then will

I — ; .

tr

On the inJeiinite line B^i describe the curve of this equa-

tion, BMDRLFC, by the method taught in prob. 2, sect. 1, of

this chipter, taking the values of r from the fixed point B.

The ordinates pm, sr, &c, will be eq lal to z ; and therefore,

from the point B draw the right line ba =y, parallel to the

ordinates PM, sr, and through the point a draw the Inde-

finite right line KC both ways, and parallel to bq. From the

points in which it cuts the curve, let fall the perpendiculars

MP, RS, ca; they will determine the abscissas bp, ns, bq,

•which ar^ tne roots of the equation proposed. Those from

A towards Q are positive, and those lying the contrary way
are negative.

If the right line Ac touch the curve in any point, the cor-

responding abscissa x will denote two equal roots; and if it

do not meet the curve at all, all the roots will be imaginary.

If the sign of the last term, a^f, had been positive, then

we must have made z = —J, ^nd therefore must have taken

BA zz —J", that is, below the p iint p, or on the negative side.

EXERCISES.

Er. 1 . Let it be proposed to divide a given arc of a circle

into three equal parts.

Suppose tne radius of the circle to be represented by r,

the sine of the given arc by ttj the unknown sine of its third

part by -«, and let the kno.vn arc be ::5w, and of course the

required arc be u. Then, by equa. viii, ix, chap, iii, we
shall have

«.!> 2i/ . rn^ w + rif^ In . sin M
sm Sm =: sm (2« -}- w) :r -,

SHI '/ . ons u
sin 2w = sin ( ?f -f- m) — ,

„ , . V cos' V. — sin' u
COS 1u = cos ( M -f m) n . Putting,
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Putting, in the first of these equations, for sin 3u its given

value a, a;tu for shi '2h, cos 2u, their values given in the two

other equations, there will arise

3 sin 71 . cos' u . sir^ w
a = .

r

Then substituting for sin u its value r, and for cos* u its

value r^ — .r% and arranging all the terms according to the

powers cf Xy we shall have

a cubic equation of the form x^ —px -^ </ = 0, with the

condition that -n^^p^ > -^q"-, that is to say, it is a cubic equa-

tion falling under the irreducible case, and its three roots are

represented by the sines of the three arcs u, u -j- 1^20'', and
u + 240".

Now, this cubic may evidently be constructed by the rule

in prob. 3 cor. 3. But the trisection of an arc may also be

effected by means of an equilateral hyperbola, in the follow-

ing manner.
Let the arc to be trisected be ab.

In the circle abc draw the semi-

diameter A D, and to A D as a diame-
ter, and to the vertex A, draw the

equilateral hyperbola AE to which
the right line AB (the chord of the

arc to be trisected) shall be a tangent in the point A ; then

the arc af, included within this hyperbola, is one third of

the arc AB.

For, draw the chord of the arc af, bisect ad at g, so that

G will be the centre of the hyperbola, join df, and draw gh
parallel to it, cutting the chords Ab, af, in i and K. Then,
the hyperbola being equiLiteral, or having its transverse and

conjugate equal to one another, it follows from Def. 16 Conic

Sections, that every diameter is equal to its parameter, and
from cor. theor. 2 Hyperbola, that GK. . Ki — ak% or that

CK ; AK : : AK : KI ; therefore the triangles gka, aki are

similar, and the angle KAi r= agK, which is manifestly ~adf.
Now the angle adf at the qentre of the circle being equal to

KAI or FAB ; and the former angle at the centre being mea-

sured by the arc af, while the latter at the circumference is

measured by half fb; it follows that af r: iFE, or rz ^ab, as

it ought to be.

Ex. 2. Given the side of a cube, to find the side of an-

other of double capacity.

Let the side of the given cube be a, and that of a double

oney, then 2a^ — j/^, or, by putting 2an h, it will be a"b :r:y^ :

there are therefore to be found two mean proportionals be-

tween
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tvveen the side of the cube and twice that side, and the first

of those mean proportionals will be the side of the double

cube. Now these may be readily found by means of two
parabolas ; thus

:

Let the right lines AR, as, be joined ^
(, s

at right angles ; and a parabola Amh be

described about the axis ar, with the

parameter a; and another parabola ami
about the axis as, with the parameter h ;

cutting the former in M. Then APzra^,

PM in y, are the two mean proportionals,

of which y is the side of the double cube required.

For, in the parabola AMH the equation is y^ = aXy and in

the parabola ami it is .r^ rr by. Consequently a : y : : y : x,

and y : X : : r : b. "Whence yx = ab ; or, by substitution,

2/s/by = ab, or, by squaring, j/-^6 = a b- ; or lastly, j/^ — arO

r: 2a% as it ought to be.

Note. For other exercises of the construction of equations,

take some of the examples at the end of chap. viii.

GENERAL SCHOLIUM,

On the Construction of Geometrical Problems.

Problems in Plane Geometry are solved either by means of

the modern or algebraical analysis, or of the ancient or geo-

metrical analysis. Of the former, some specimens are given

in the Application of Algebra to Geometry, in the first volume
of this Course. Of the latter, we here present a few exam-
ples, premising a brief account of this kind of analysis.

Geometrical ^alysis is the way by which we proceeil from
the thing demanded, granted for the moment, till we have

connected it by a series of consequences with something an-

teriorly known, or placed it among the number of principles

known to be true.

Analysis may be distinguished into two kinds. In the one,

which is named by Pappus contemplative, it is proposed to

ascertain the truth or the falsehood of a proposition advanced

;

the other is referred to the solution of problems, or to the

investigation of unknown truths. In the first we assume as

true, or as previously existing, the subject of the proposition

advanced, and proceed by the consequences of the hypothesis

to something known ; and if the result be thus found true,

the proposition advanced is likewise true. The direct de-

monstration is afterwards formed, by taking up again, in an

inverted order, the several parts of the analysis. If the con-

sequence at which we arrive in the last place is found false,

we
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Ve thence conclude that the proposition analysed is also false.

When a problem is under consideration, we first suppose it

resolved, and then pursue the consequences thence derived

till we come to something known. If the ultimate result

thus obtained be comprised in what the geometers call data,

the question proposed may be resolved : the demonstration

(or rather the construction), is also constituted by taking the

parts of the analysis in an inverted order. The impossibility

of the last result of the analysis, will prove evidently, in this

case as well as in the former, that of the thing required.

In illustration of these remarks take the following ex-

amples.

Ex\ 1 . It is required to draw, in a given segment of a

circle, from the extremes of the base A and b, two lines AC,

sc, meeting at a point c in the circumference, such that they

shall have to each other a given ratio, viz, that of M to N.

Analysis. Suppose that the thing is ef-

fected, that is to say, tliat AC : CB : : M : N,

and let the base ab of the segment be cut

in the same ratio in the point E. Then eg,

being drawn, will bisect the angle acb (by

th. 83 Geom.); consequently, if the circle

be completed, and ce be produced to meet it in f, the re-

maining circumference v^ill also be bisected in F, or have
FA = FB, because those arcs are the double measures of equal

angles : therefore the point f, as well as E, being given, the

point c is also given.

Construction. Let the given base of the segment ab be
cut in the point E in the assigned ratio of M to N, and com-
plete the circle ; bisect the remaining circumference in F

;

join FE, and produce it till it meet the circumference in c ;

then drawing CA, CB, the thing is done.

Demonstration. Since the arc fa = the arc fb, the angle

ACF zz angle bcf, by theor. 49 Geom. ; therefore ac : cb : :

AE : eb, by th. 83. But AE : eb : : M : N, by construction
j

therefore AC : CB : : M : n. q. e. d,

Ex. 2, From a given circle to cut off an arc such, that

the sum of m times the sine, and « times the versed sine,

may be equal to"a given line.

Anal. Suppose it done, and that aee'b is

the given circle, be'e the required arc, ED its

sine, bd its versed sine-, in da (produced if

necessary) take bp an 7uh part of the given

sum; join pe, and produce it to meet bf J_
to AB, or

II
to ED, in the point F. Then, since

WJ . ED + /f . BD = ?J . BP = n . PO + n . BD ;
''

"'•'
^

consequentlj'
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consequently m . ed = 7i . pd j hence pd : ed : : vi : n. But
PD :£!).•: (by sim. tria.) pb : bf ; therefore pb : bf : : w : n
Now PB is given, therefore bf is given in niv.gnitude, and,

being at right angles to iB, is also given in position ; therefore

the point F is given, and consequently pf given in position

;

and therefore the point e, its intersection with the circum-

ference of the circle aee'b, or the arc be is given. Hence
the following

Const. From b, the extremity of any diameter ab of the

given circle, draw BM at right angies to ab ; in AB (produced

if necessary) take BP an 72th part of the given sum; and on

BM take bf so that bf : bp : : n : vi. Join pf, meeting the

circumference of the circle in E and e', and BE or be' is the

arc required.

Demon. From the points e and e' draw ed and e'd' at

right angles to ab. Then, since bf : bp : : n : /«, and (by

sim. tri.) bf : bp : : de : dp ; therefore de : dp : '. n : m.
Hence m . de = w . dp ; add to each n . Bn, then will

w . DE 4- 71 . bd = 7z . bd + ?i . DP = ?z . PB, or the given

sum.

Ex. 3. In a given triangle abh, to inscribe another tri-

angle abc^ similar to a given one, having one of its sides pa-

rallel to a line m-nn given by position, and the angular points

a, h, c, situate in the sides ab, bh, ah, of the triangle abh
respectively.

Analysis. Suppose the thing done,

and that abc is inscribed as required.

Through any point c in bh draw CD
parallel to w?bw or to ab, and cutting

ab in d; draw CE parallel to bCy and

DE to at', intersecting each other in e.

The triangles dec, acb, are similar, and Dc : ab : : ce : be
i

also bdc, Bab, are similar, and dc : ab : : bc : B^. Therefore

EC : CE : : Bb : be i
and they are about equal angles, conse-

quently B, e, f, are in a right line.

Construe. From any point c in bh, draw cd parallel to

nm ; on cd constitute a triangle cde similar to the given one

;

and through its angle E draw be, which produce till it cuts

ah in c: through e draw ca parallel to ed and cb parallel to

EC -, join abf then ahe is the triangle required, having its side

ab parallel to nin, and being similar to the given triangle.

Demon. Far, because of the parallel lines ae, de, and eb^

EC, the quadrilaterals bdec and Baeb, are similar ; and there-

fore the proportional lines DC, ab, cutting off equal angles

bdc.
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EDC, enb'y BCD, nha; must make the angles edc, ecd, re-

spectively equal to the angles cuby cba ; v. nile ab is parallel

to DC, which is psr ^"el to /wb/?, by construction.

Ex. 4. Given, in a plane triangle, :he vertical angle, the

perpendicular, and the rectangle of the segments of f e base,

made by that perpendicular; to construct the triangie.

Anal. Suppose acc the triangle re-

quired, BD the given perpendicular to the

base AC, produce it to meet the periphery

of the circumscribing circle abch, whose
centre is o, in h ; then, by th. 61 Geom.
the rectangle bd . dh := ad . dc, the given

rectangle: bence, since ud is given, dh
and BH are given; therefore bi = Hi is given; as also

ID = OE : and the angle eoc is rr abc the given one, be-

cause EC is measured by the arc kg, and abc by half the

arc AK.C or by KC. Consequently eg and AC = 2ec are given.

Whence chis

Construction. Find dh such, that db . dh = the given

rectangle, or find dh = — '

; then on any right line

GF take FE = the given perpendicular, and EG = dh ; bisect

FG in o, and make Ecc = the given vertical angle; then

will oc cut EC, drawn perpendicul^^r to oe, in c. With
centre o and radius oc, describe a circle, cutting CE pro-

duced in a: through F parallel to Ac draw fb, to cut the

circle in B ; join a i;, CB, and abc is the triangle required.

Remark. In a similar manner we may proceed, when it

is required to divide a given angle into two parts, the rect-

angle of whose tangents may be of a given magnitude. See
prob. 40, Simpson's Select Exercises.

Note. For other exercises, the student may construct all

the problems except the 24th, in the Application of Algebra
to Geometry, at tne end of vol. L And th.^t he may be the

better able to trace the relative advantages of the ancient and
the modern analysis, it will be adviseable that he solve those

problems both geometrically and algebraically.

CHAPTER
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CHAPTER X.

OF FLUXIONS AND FLUENTS.

Art. 1 . In the 2d volume of this Course has been given

n compendious and easy treatise on Fluxions and Fluents

;

and what follows is a further and more general extension of
the same subject, chiefly on the transfoi'mation and on the
inverse method of fluxions; as the rules for the direct me-
thod, given in th>it volume, will be found quite suiBcient for

finding the fluxions ofthe ordinary forms of quantities. From
art. 32, to art. 48, of that volume, have been given a collect

tion of the most common and obvious rules for finding the

fluents of given fluxions ; and which require no further

proof or consideration, as they are self-evident, being simply

the reverse of the preceding rules for finding fluxions. But,

in art. 4*J &c, is given also a compendious table of various

other forms effluxions and fluents, the truth of which it may
be proper here in the first place to prove.

2. As to most of those forms indeed, they will be easily

proved, by only taking the fluxions of the forms of fluents,

in the last column, by means of the rules before given in

art. 30 of the direct method ; by which they will be found
to produce the corresponding fluxions in the 2d column of
the table. Thus, the 1st and 2d forms of fluents will be
proved by the 1st of the said rules for fluxions: the 3d and
4th forms of fluents by the 4th rule for fluxions : the 5tli

and Cth forms, by the 3d rule of fluxions : the 7th, 8th, 9th,

10th, 12th, 14th forms, by the 6th rule effluxions : the 17th

form, by the 7th rule effluxions : the 18th form, by the 8th

rule of fluxions. So that there remains only to prove the

11th, 1 3th, loth, and 16th forms.

3. Now, as to the 16th form, that is proved by the 2d
example in art. 63, where it appears that x^ {dx — x'-) is the

fluxion of the circular segment, whose diameter is dy and
versed sine x. And the remaining three forms, viz, the 11th,

1 3th, and 1 5th, wiU be proved by means of the rectifications

of circular arcs, in art. Q>1.

4. Thus, for the 1 1th form, it appears by that art. that the
fluxion of the circular arc z, whose radius is r and tangent t,

IS z = -
^^ . Now put t^x^ , or t^ = x^i and a= r^

:

then is ^ = |n.r x^ and r^+ i^ = a + x , and z
,.2 + i-i

= ~a7ix
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I hence = -i— r: —«, and the fluent is
t + x" a+Xfi ian an

2i 2 J- ,
',

l« 2— = — X arc to radius */^ and tancr. a' ,or = —- x arc
an nx -v tj ' „^a

to radius 1 and tang. •— , which is the first form of the

fluent in n^. xi.

5. And, for the latter form of the fluent in the same n*;
2

because the coefiicient of the former of these, viz, —- is

"V"

double of the coefiicient of the latter, therefore the arc

in the latter case, must be double the arc in the former.

But the cosine of double an arc, to radius 1 and tangent iy is

1 — t'^ r'-' . .

:;
—

- ; and because t^ = -— by the former case, this substi-

tuted for f" in the cosine -, it becomes , the cosine

as in the latter case of the 1 1th form.

6. Again, for the first case of the fluent in the 13th form,-

By art. 6 1 vol. 2, the fluxion of the circular arc z, to radius r

and sine y, is z =—rr::—rr or = -—-——-r to the radius 1.

Now put 3/ = */-— , or 3'^= —-— ; hence ^(1 —
J/^)

=

then these two being substituted In the value of «, give z,

or —-7f
—-=—-X—n -r; consequently the given fluxion.

is =—Zy and therefore its fluent is

—

Zy that is

—
• X arc to sine V—i as In the table of forms, for the first

n a

case of form xiii.

7. And, as the coefiicient —, in the latter case of the said
n

2
form, Is the half of — the coefiicient In the former case,

therefore the arc in the latter case must be double of the arc

in the former. But, by trigonometry, the versed sine of
double an arc, to sine y and radius 1, is 2i/% and, by the

Qxn 1

former case, 2y^ =— ; therefore— x arc to the versed sine

-— is the fluent, as In the 2d case of form xiii.

8. Again
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8. Again, for the first case effluent in the 15th form. By
art. 61 vol. 2, the fluxion of the circular arc s, to radius r

and secant Sj is z = \'
, or = ,.[ ^^ to radius 1.

in

Now, put s =:V -— = —— ,or5* — — jhencei v'lr — l) =

1 . in-1 .
.>/( 1)= -—\/'{x —«\and 5 z=.^— x^nx^

then these two being substituted in the value of i, give z. or

,^^,I_i) = -V^ ^
s/l'^-l)

» consequently the given fluxion

_ IXX 2 . . .2 • . 2
z, and theref. its fluent is —— z, that is

X arc to secant v'— , as in the table of forms, for the first

case of form xv.

9. And, as the coefficient , in the latter case of the

Q
said form, is the half of \ the coefficient of the former

case, therefore the arc in the latter case must be double the

arc in the former. But, by trigonometry, the cosine of the
2

double arc, to secant >f and radius 1, is — — 1 *, and, by the

former case, I = ~ 1 = ; therefore—— x
Off j-«

arc to cosine is the fluent, as in the 2d case of form xv.
.T"

2 . a
Or, the same fluent viull be —- x arc to cosine v^—>be-

cause the cosine of an arc, is the reciprocal of its secant'

10. It has been just above remarked, that several of the

tabular forms of fluents are easily sliovvn to be true, by taking

the fluxions of those forms, and finding they come out the

same as the given fluxions. But they may also be deter-

mined in a more direct manner, by the transformation of the

given fluxions to another form. Thus, omitting the first

form, as too evident to need any explanation, the 2d form is

z = {a -{- x'')'"''\t''~'xy where the exponent (??— 1) of the

unknown quantity without the vinculum, is 1 less than («)

that under the same. Here, putting ^ = the compound

quantity a -\- x": then isi = nx''~^x. and z =.S j hence^

by art. 36, z = -d - {1j!:J± ^s in the table.

11. By
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11. By the above example it appears, that such form of
fluxion admits of a fluent in finite terms, when the index
(tl — I) of the variable quantity (.i) without the vinculum,
is less by 1 than >i, the index of the same quantity under the
vinculum. But it will also be found, by a like process, that
the same thing takes place in such forms as (a -h^")"'«i''"""'jfj

where the exponent (en — 1) without the vinculum, is 1 less

than any multiple (c) of that (n) under the vinculum. And
further, that the fluent, in each case, will consist of as many
terms as are denoted by the integer number c ; viz, of one
term when c = 1 , of two terms when c = 2, of three terms
when c = 3, and so on.

12. Thus, in the general form, s; r: (« -{- x")"'x"'~'^x,

putting, as before, a + .r" = j/ ; then is ^" =3/ — a, and its

fluxion ?i.v"~'x =r j, or ar'^'i = —, and jr"'~'i or x"'~''

.r^-'i = _ (j/ _ ay-y
J also (a -f x")"' = y" : these va-

lues being now substituted in the general form proposed,

give z = — (7/— ay ~ ^y"'y. Now, if the compound quan-

tity {y — fl}'"""' be expanded by the binomial theorem, and
each term multiplied byj/"^, that fluxion becomes

&c); then the fluent ofevery term, being taken by art. 36, it is

1 .y'" + c c~] a>i'"*<:—^ c — \ c — 1 a-i/'"*c — 'i

n m + c 1
'

VI + c — 1 1 * '2 ' m + c — 2 ''

yf^
, \ c - I a c — I . c — 2 a^ c— l.c-2.c-3 «3

'n^~7L d- 1
'
y

"^ d— '2 * 2^- d — 3 ' 2.3^3

&:c), putting d =: vi -j- c, for the general form of the fluent;

where, c being a whole number, the multipliers c — 1, c -- 2,

c — 3, &c, will become equal to nothing, after the first c

terms, and therefore the series will then terminate, and ex-

hibit the fluent in that number of terms ; viz, there will be
only the first term when c =: 1, but the first two terms when
c zr. 2, and the first three terms when c — 3, and so on.

—

Except however the cases in which m is some negative num-
ber equal to or less than c\ in which cases the divisors, ni-\-Cf

m -{ c — \, m -{ c — 2, &c, becoming equal to nothing, be-

fore the multipliers c — 1, c — 2, &c, the corresponding terms

of the series, being divided by 0, will be infinite : and thezi

the fluent is said to f.ul, as in such case noticing can be deter-

mined from it.

13. Besides this form of the fluent, there are other me-
thods of proceeding, by which other forms of fluents are

Vol. III. O derived,
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derived, of the given fluxion z =z (a -\- x")'"x"'~^x, which
are of use when the foregoing form fails, or runs into an in-

finite series ; some results of which are given both by Mr.
Simpson and Mr. Landen. The two following processes are

after the manner of the former author.

14. The given flux;on being (a + x'')'"jr"'~'x-^ its fluent

m;iy be assumed equal to (a + .r'-)'" + ' muliiplied by a general

series, in terms of the powers of j: combined with assumed
unknown coefficients, which series may be either ascending

or descending, that is, having the indices either increasing or

decreasing

;

viz, (a + x')'" + ' X ('at'' + Bx*""' -f c.r'"~'' + Dr'"~^' + &c),

or (a + x")'"+' X (A.i' 4- i;x'+ ' + c.r"+ ^'
-f Dr" + ^' + &c).

And first, for the former of these, take its fluxion in the

usual way, which put equal to the given fluxion (ff fj")'"
x^"~^Xy then divide the whole equation by the factors that

may be common to all the terms ; after which, by comparing
the like indices and the coefficients of the like term?, the

values of the assumed indices and coeflicients will be deter-

mined, and consequently the whole fluent. Thus, the former
assumed series in fluxions is,

n(vi + l)x"-'x(a -f x")" X (A-r*" + bx'-' + cr"-^ &c) +
(a + X")" + 'xX (;• AX' -'-\-{r-s)Bx''-'-'-^ (r - 2.v)c-t^

-
'-' - *

&c) ; this being put equal to the given fluxion [a-\-x")'"x'"~^x,

and the whole equation divided by {ri-\-x")'"x~^x, there results

n(m+l)x" X (ax' + Bx'-^+cr-"-f dx^-3--|- &c) ? _ ,,

-f («+x")x(/'Ax'- (r— ^^Bx''-'+(r-2i)cx''-"'&c)> ~ ^ •

Hence, by actually multiplying, and collecting the coefficients

of the like powers of .r, there results

.
' > AX +n[m-i-])( r + ri— s / _, , v i n /

+ '-* ) +r-2y S

'^^ &c>-=0,

en . r / \ r— s o J—X .. + .... raiix . , . +(r— ijnni &c. -^

Here, by comparing the greatest indices of jt, in the first and
second terms, it gives r -\- n = ai, and r-\-n— s-zzr-,

which give r = (f — \)n, and n = s. Then these values

being substituted in the last series, it becomes

[c + m.)nkx +[c + m—\)nv.x + (f + »n — Z)"C.t 6ic ( .

Now, comparing the coefficients of the like terms, and put-

ting c T m zr: dy there result these equalities :

I r—\ .iih r — 1 . n c— 2.oB c— If— 2.u'

'* ~"ri7 ' ^ ~ d-\ "" ~~(7- iTdn ' ^~ d-l' ~ '^7^T^-<2.dn
'*

&c; which values of A, B, c, &c, with those of rand s, being

now substituted in the first assumed fluent, it becomes
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frt + 5-'')"'+ '«£«-» 1 c— 1.0 c~l.c— 2.0' c— l.f— 2.c-3.a3
'

rfT" ^ i i7Il"iT^
"^

(/-l.ri-^a*"
~ d-l.d-'Z.il-3.x3'!

&c, the true fluent of {a -\- x"y"x"'~'x, exactly agreeing

with the first value of the 1.9th form in the table of fluents

in my Dictionary. Which fluent therefore, when c is a whole
positive number, will always terminate in that number of

terms ; subject to the same exception as in the former case.

Thus, if c = 2, or the given fluxion be (a + :v"y"x-"-'x
-,

then, c -f w or d being = vi + 2, the fluent becomes
(a + x'tyi+^x" or — ". (a + j.-'')'"*' {m + \)x"~a

{m+'Z)n ^ m+r n »«+!.?« + '2'

And if c =: 3, or the given fluxion be (a + x'')'"x^"-'x
-,

then m + c or d being = m -{- 3, the fluent becomes

i . X ( 1 I ) ^^^ ^ " X {

—

— —

'

(?«+3)rt ^
7« + ii

"^ TO + '2. m + 1' 11 m-i-3

_
{

1_ \ And so on, when c is other
i/i + o .,/; + 2 m + 'i ,m+'2 m + \

whole numbers : but, when c denotes either a fraction or a

negative number, the series will then be an infinite one, as

none of the multipliers c — 1, t — 2, t — 3, can then be equal

to nothing.

15. Again, for the latter or ascending form, {a-\-x")"''^^ X
(A.r'' + BX'' + ' + c.r'' + ^' + -DX'' + ^' + &c), by making its

fluxion equal to the proposed one, and dividing, &c, as be-

fore, equating the two least indices, &c, the fluent will be
obtained in a different form, which will be useful in many
cases, when the foregoing one fails, or runs into an infinite

series. Thus, i£ r + s, r -\- 2s, &c, be written instead of
r — s, r — 2s, &c, respectively, in the general equation in

the last case, and taking the first term of the 2d line Into the
first line, there results

-,..+,(,, + 1)^ A.r^^«+ "^";+l)? B^-« + ^ &c 7 ,

+ raAx''i-{r-{-s)aBx' + '-^(r+2s)acx' + '' &c J
Here, comparing the two least pairs of exponents, and th»

coefiiclents, we have r =. en, and s = ni then a = - = — ;'
ra. cna '

r+v{m + \) C + TO+l A C + 77i+l

a{T + s)
' c+ \ ' a \c+l)cnu'* '

c+?n+2 c + m+\ . c+m + 2 g rrni r j
-;

—

—— B = H ; :, 5cc. 1 licretore, denoting
(c+2)a ' o .f + 1 . f +2 . 7ia3

' o

c + 7n by dy as before, the fluent of the same fluxion

(a -f x")'"x"" ~ ^X , will also be truly expressed by
la + x'>)'n*^x<:" ,\ d+\.x"

, rf + 1 . d+ 2 . x'" _ ,

cna ^1 c+ 1 .« ' c+1 .c + 2 . a" '
*

agreeing with the 2d value of the fluent of the 19th form in

Q2 my
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my Dictionary. Which series will terminate when (I or c-\-m
is a negative integer ; except when c is also a negative in-

teger less than d ; for then the fluent fails, or will be infinite,

the divisor in that case first becoming equal to nothing.

To show now the use of the foregoing series, in some ex-
ample of finding fluents, take first,

16. Example 1. To find the fluent of

.

—

'—- or 6xx [a -\- xY,

This example being compared with the general form
x^"-^Jc{a + .r")"', in the several corresponding parts of the

ilrst series, gives these following ec^ualities: viz, o=(/, 7i— 1,

en— 1 = 1 , or t — 1 = 1 , or c = 2 ; m =.— ^\ y = a -{- Xy

d = m + c = 2~i=i.^y = (^ + .)i, -i-= |,;-^.

— =
; here the series ends, as all the terms after this

y a + x

become equal to nothing, because the following terms con-

tain the factor c — 2 = 0. These values then being substi-

tuted m — (-- — -—
- . — ), It becomes [a + .r)^ x

n ^ d a — \ y ^

<T - tt) =/-r- - -") ';^' ^^ + '^'>\=—-v^(^ + '^•)5

which multiplied by 6, the given coefficient in the proposed

example, there results (4'.r — 8a) . -^/(a + a.), for the fluent

required.

17. Exam. 2. To find the fluent of

-^~, — («" + x^)^ X Zx-M.

The several parts of this quantity being compared with the

corresponding ones of the general form, give a = a*, n = 2,

711 = 4, en — 1 or 2c — 1 =: — 6, whence c n rr — A,

and d = m -\- c = ^ — 1 = —
l-
= — 2, which being a nega-

tive integer, the fluent will be obtained by the 3d or last form

of series ; which, on substituting these values of the letters,

mves -^ -^- X (-;
—— ) = 71— X (1 - ^) =

^ X • 7— lor the required fluent or the nronosed
a^ 5c' ' ^ ^

fluxion.

18. Exam. 3. Let the fluxion proposed be
5j3« — If-± = 5(1) + x'T-'xV ,'3« X.
^{b+x'')

Here, by proceeding as before, we have a =. b, n ^ 72,

m z=. — ly 6 = 3, and d =: c -\- m ~ -\ ; where c being a

positive integer, this case belongs to the 2d series j into

which
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which therefore the above values being substituted, it becomes

—-TT- X (T-pr+l-i7^T)=V(^-Mlx

19. Exam. 4. Lettheproposed fluxion be 5(-|- — z;^)^z"'a;.

Here, proceeding as above, we have a = y, ?? = 2, m =if
en — 1 or 2c — 1 = — 8, and c = — ^, x = — z, d = c -\-

VI = — 3, which being a negative integer, the case belongs

to the 3d or last series ; which therefore, by substituting

these valuesj becomes Z ", . X (-r 4—r-r -1 r—^,—7-) =
5 • 3

l%__il X (I+-3- ^-^)= % - X (.5+ 122^ + 242^),

the true fluent of the proposed fluxion. And thus may
many other similar fluents be exhibited in finite terms, as iu

these following examples for practice.

Ex. 5. To find the fluent of -^ Sr^xVia" - x^).

Ex. 6. To find the fluent of - 6x'x . (a" - x^)-^.

Ex. 7. To find the flu. of t^^^^^^^ or (a - x")^x-^" ^ '^•

20. The case mentioned in art. 37, vol.2, viz, ofcompound
quantities under the vinculum, the fluxion of which is in a

given ratio to the fluxion without the vinculum, with only

one variable letter, will equally apply when the compound
quantities consist of several variables. Thus,

Example 1. The given fluxion being {^xx -{- 8j/j) x

V{x'^-\- 2j/-), or (4.rjf + Syy) x (x^ + ^j/-)^, the root being

x'^+2i/', the fluxion of which is 2xx + '^i/j- Dividing the

former fluxlonal part by this fluxion, gives the quotient 2 :

next, the exponent ^ increased by 1, gives 4 ' lastly, dividing

by this I, there then results |(x- + 2^/*)^, for the required

fluent of the proposed fluxion.

Exam. 2. In like manner, the fluent of

{f +y + 2^^ X {6^^ + 12j/ly H- ISz'z) is

Exam. 3. In like manner, the fluent of

2xXxy- + xijj + x^'x) V(x' + 2/), is 4(a:* + Qx'jt/^)^.

21. The
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2 ] . The fluents of fluxions of the forms

',, &c, or
,

'-• •

,, &c, v/here c and 7i are wholex^a i' air a- x'Tha

numbers, will be found in finite terms, by dividing the nu--

merator by the denominator, using the variable leuer .i r-^ the

first term in the divisor, continuing the division till the

powers of x are exhausted ; after which, the last remaiider

will be the fluxion of a logarithm, or of a circular nrc, 5(C.

Example 1. To find the fluent of—— or -^.
OCX (IX . (tX

By division, —— = x —, where the remainder is' ' X + a X + a I + u

evidently = a X the fluxion of the hyperbolic logarithai of
• a -\- X : therefore the whole fluent of the proposed tluxion

is X — a X hyp. log. of (« + .r). in like manner •11 be

found that,

JSx. 2. The fluent of -^^, is i+ax hyp. lo -a).

JEx. 3. The fluent of——-, is — x — a x n)^. lo.;^. of

(a - a).

Ex. 4. The fluent of ^'^^, is i.r* - ax + «" x hj p. log.

of (a + x).

Ex. 5. The fluent of ^^, is - ix' - ax - a' x hyp.

log. of (a — a).

Ex. 6. The fluent of ^^, is Jar" + ax + a^ x hyp. log.

of (x — a).

Ex. 1. The fluent of ^^, is j-x^ - iflx' -j- a'ar — a^ x

hyp. log. of (.r + a).

Ex. 8. The fluent of ^' is ix^ + iax^ + a\v + a^ x
I — a

hyp. log. of (x — a).

Ex. 9. The fluent of -^-^, is - j-x^ - iax- - arx +
a — X

fl* X hyp. log. of {a — x).

Ex. 10. The fluent of—-, is lar* - ^ax^ + xaV -

fl^r + a'* X hyp. log. (a + x).

Ex. 11. The fluent of , is H r- —

'

t^~2 + Sec ± a« X h. 1. {a + a^.
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£^. 12. 1 he fluent of— , is —
a— 1 n VI—

1

7J — 2

:- &c - a" X h. 1. (a - x).

Lx. 13. The fluent of —-, is +
a^x" — "^

&c + a" X h. 1. (x — a).

-r-» 3^X ... tl^x

Ex. 14. Tlie fluent of —— = (by division) x ->

is, (by form 1 I vol. 2) .r — cir. arc of raclius a and tang. Xf

or .r — 4« X cir. arc cf rad. I and cobine tt !,• ^^ li^s

manner,

Ex. 15. The fluent of-——;, or of — pc- + ], is —

X + ^a X h. 1.
" ", by form 10. And
a — X '

Ex. 16. The fluent of -7-^— = x ^ ^— , is x -{- ^a x

hyp. log. —7-, by the same form.

22. In like manner for the fluents of —;. Thus,
a- i=b X'

Ex. 1 7. The fluent of
""

, = x'x — ax + -—
-, is

(by form 1 I), \x' — a-x + «'' x cir. arc to r:\d. a and tang, or,

or 4.r-' — a\r + ia^ x cir. arc to rad. 1 and cosine „
'

. And

Ex. IS. The fluent of -^^-^ = — x^x >- ci^x -[- —— , is
u'^ — x- a-— a:^

~ -^x^ — a'x + Ja^ X hvD. log. ^
—

^, by form 10. Also

E2\ 19. The fluent cf -—, = ^''x + a'x + -"—
, is

X- — tr x-*— a'''

-'-.r^ + «'^ -\- 'a= X hyp log. , by form 10.

23. And in general fur the fluent of
'*''^

, where ?2 is
,V' ^1^ 11'^

any even positive number, by dividing till the powers of x
in the numerator are exhausted, the fluents will be found as

before. And flrst for the denominator x^ -f- <^^i ^s in

Ev. 20. For (he fluent of ~^- = (by actual division)

x^'-'x - a\v"-'x + a\v"-'' - Sec ± a"-^x ^ ^-^ ; the

number of terms in the quotient being \n, and the remainder

"X. -r—^, viz, - or + according as that number of terms is

odd or even. Hence, as before, the fluent

is
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'X zz a"~- X arc to rad.

a and tan .r, or — + Scc . . ± aP~-x rp Ja"

1,1 a-— sc-

are to rad. 1 and cos. - —r.

ILx. 21. In like manner, the fluent of

r 8:c 4- ia" ' X hyp. loe;. —

.

Ex. 22.

X hyp. log.

24. In a similar manner we are to proceed for the fluents of

—
^, when n is any odd number, by dividing by the de-

nominator inverted, till the first power of .r only be found
in the remainder, and when of course there will be one term
less in the quotient than in the foregoing case, vvhen n was

an even number ; but in the present case the log. fluent of

the remainder will be found by the 8th form in the table of

fluents in the 2d volume.

Ex. 22. Thus, for the fluent of -r—,, where n is an odd

number, the quotient by division as before, is x^^-x—crx"'^

X + a'^x"~^x — &c ± a''~^xx, the number of terms being

^^, and the remainder zr. ——^. Therefore the fluent is
2 x^ + or

^ -'^' + &c. . . ± "—^ q: ia"-' x h. 1. x' + a\

Ex. 23. The fluent of -^—-, Is obtained in the same
x^— a*

manner, and has the same terms, but the signs are all positive,

and the remainder is + 4^"~' X hyp. log. x'- — a'.

Ex. 24-. Also the fluent of -T^n ^s still the same, but the

signs are all negative, and the remainder Is — la"-^ x hyp-

log, a' — .r^. Hence also,

Ex. 25. The fluent of -f^, Is ix* — ^a" X hyp. log.

o£ x^ -f a^.

Ex. 26. The fluent of ^-^£^, Is -|.r' + lor x hyp. log.

of x« — g\

Et . 27. The fluent of -—-,» is — l-v^ — la^ x hyp. log.

of a^ — x^

Ex.
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Ex. 28. The fluent of ^^. Is ^x^ - \a\v^ + ^a" x

hyp. log. X' -\- a~.

Ex. £9. The fluent of -^,, Is {x^ + i«'x'- + -Ja'* x

hyp. log. X- — a^.

Ex. 30. The fluent of -^^„, is — i.i* - ^a'a.^^ - la'' x

hyp. log. a- — x'^-.

25. Ex. 31. In a similar manner may be found the

fluents of- , where c is any whole positive number, by

dividinjT till the remainder be -, which can always

be done, and the fluent of that remainder will be had by the

8th form in vol. 2. 'I^hus, by dividing first by x" -\- a", the
tenns are, jt'^-^-'at — a"x'-"-^"-'x + a'"x'''-^"-^x j-

&c till the last term be r/''^~'^''x''^~'^^"~', and the remainder

—'

ir — when <^/ is = c— 1 , or 1 less than
»'' + a" X + a''

C, which is also the number of the terms in the quotient

;

and therefore the fluent is

3 ;- ± T -a^'-^i" X
en — H m — 'Jn en — 3'i. n n

hyp. log. of .r" -{ a". In like manner,

Ex. 32. The fluent of has all the same terms
x" — a"

as the former, but their signs all + or positive, and the re-

mainder — a^'~ '^ ' X hyp. log. of .r"— a". Also in like manner

v-c' — I ;•

Ex. 33. The fluent of has all the very same terms,

but all negative, and the remainder d'^~^^" x hyp. log.

of a" — x".

Ex. 34. The fluent of
'-

^ = — x —, — is also
b =fc7 ex" e i ^ ^n

e

the same with the preceding, by substitut. — for a", and mul-

tiplying the v/hole series by the fraction —

.

26. When the numerator is compound, as well as the de-

nominator, the expression may, in a similar manner by divi-

sion, be reduced to like terms admitting of finite fluents.

Thus, for

Ex.
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Ex. 35. io hnd the fluent of — x xx = .

c + di' c + u\^

By division tlus becomes : xx -\- "~^~ x —^-!—- »
^'^" ^'•^

•' a aU c— + i''

d

fluent - —x"- + —^^r ^ ^yp- I'-'g- of -7 + ^ •

27. There are certain methods of finding fluents one from
another, or of dediicii;g the fluent of a proposed fluxion from
another fluent previously known or found. There are hardly

any general rules however that will suit all cases; but they

mostly consist in assuming sone quantity y in the f rm of a

rectangle or product of two factor?, v/hich are such, that the

one of them drawn into the fluxion of the other may be of the

form of the proposed fluxion ; then taking the fluxion of the

assumed rectangle, there will thence be deduced a value of

the proposed fluxion in terms that will often admit of finite

fluent.!. The manner in such cases will better appear froin

the following examples.

Ex. 1. To find the fluent of

—

.

Kere it is obvious that n y be assumed = x\/{x^ + «*),

then one part of the fluxion 0/ this product, viz, x x flux,

of V a^ + (i')i will be of the same form as the fluxion pro-

posed. Puttit^.g theref the assumed rectangle y=:x \/(.r" -{-«')

into fluxions, it is j = a- /(a' -f a') +—77-

—

^^' But as the

former part, viz, xVi^x^ -j- a*), does not agree \t'ith any of

our preceding forms, which have been integrated, mul iply

it by V [x'^ + tt^)i and subscribe the same aa a denominator

to the product, by which that part becomes

x = — : this united with the former part,

2 -r irx
makes the whole j' = ——;—:r -j

—

-—;
; hence the given

ir= {ji — 4-«- X —-——~, and its fluent is

therefore 4J/
- -i«' ^ f;j{^,-^)- t-^V(x^- + a"-) - \cr x

hyp. log. of .r + \^ {^ + «^^ by the 12th form of fluents.

JEx. 2. In like manner the fluent of -77—,

—

— will be

found from that of bv the same 1 2th form, and

is = |.tVU' - a) + ^a^ X hyp. log. x -}- -/(.r* - a").

Ex. 3. Also in a similar manner, by the 13th form, the

fluent
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liiuent of ., t"" ,,
will be found from that of

'
, and

^{"^- x^) V'.'' ^ J

comes out — i-rv''(«' — ^') + '^ X ^^^- ^^'^ ^° radius a and

sine .r.

£.r. 4. In like manner, the fluent of ,^ ^
will be

found from that of -~r-77- Here it is manifest that y
must be assumed = .rW(A'' +" ), m order that one part of

its fluxion, viz, x x flux, of V(x- + a) may agree with the

proposed fluxion. Thus, by taking the fluxion, and re-

ducing as before, the fluent of y^J^ ^.^j
will be found =

r'-r

2,.v-^ V(-r^ + a-) - ia' x J ^^ ,. ^ „.)•
_

E.r. 5. Thus also the fluent of- ,^'

^

is -}x^ y,/ix'^ - or)

Ex. 6. And the/ /'' - -, is - i .rV(«' - •»'') +

In like manner the student may find the fluents of

-, 1^

—--Sec, to

—

, , _^ " , where 7i is any even

number, each from the fluent of that which immediately

precedes it in the series, by substituting for y as before.

Thus the fluent of p-^=- x"- VG^' + «') - ^^^
. x" - ^i

•^ V(^' + " )

28. In like manner we may proceed for the series of simi-

lar expressions where the index of the power of .r in the nu-
merator is some odd number.

Ex. 1. To find the fluent of

—

-r——-. Here assumincr

y = .v-'/(x^ + «-), and taking the fluxion, one part of it

will be similar to the fluxion proposed. Thus, } = 2xx

iy/(.r^ + ^^) -\ ri~—7s 5 hence at once the given fluxion

= i — 2xx\/(x^ 4- a'-)-, theref. the required fluent

isy -f .
2xx^{x'- + a) ~ .rVG^"" + ^') - K-^" + a^)^*

by the 2d form of fluents.

jE-r. 2. In like manner the fluent of —r~, r> is

x'Jix'- - a") - ^{x^ - a'Y.
Ex.
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Ex. 3. And the fluent of '^'^^ = - :iV («' " ^1

Ex. 4. To find the flu. of—-^—-, from that of ^-r.
Here it is manifest we must assume j/ =jr*^(r* + r/).

This in fluxions and reduced givesj = -——
rr+ —;;-;: r^*°

a/I-*"' + « ) VC^'' + «

)

»»<' '''"'=^ TFTiJ) = 3i -T -
;;7(|^, i

and the flu.

the fluent of the latter part being as in ex. 1, above.

In like manner the student may find the fluents of

and ^ _ . He may then proceed in a similar

way for the fluents of
, „ _^ -, —r~~

;» ^c, ——

r

r:»

where ii is any odd number, viz, always by means of the

fluent of each preceding term in the series.

29. In a similar manner may the process be for the fluents

of the series of fluxions,
X xi x-r x''x

^{a rf7 x) * V(u ;i7 x) * ^{a ^ x) ^
C,

. . . ^^^^ _^ ^^
,

using the fluent of each preceding term in the series, as a

part of the next term, and knowing that the fluent of the

first term ——— is given, bv the 2d form of fluents, r=

2 v'(a ?fc ^r), of the same sign as x.

Ex. 1. To find the fluent of

—

--—r, having given that

of — r = ^V{x + a) = A suppose. Here it is evident

we must assumeJ/ = x\/(x -}- a), for then its flux. j> = —~—

hence = ^j ~ l^A; and the required fluent is -I?/
—

^/(x +a) " ' ^^

\ak — \x^{x + fl) - |a\/(.r + a) = {x - 2a) X j-\/(x + a).

In like manner the student will find the fluents of
xi

,
x.'r

- and — r.

Ex. 2. To find the fluent of r, having given that
^{x +ay fa o

of——: = B. Here ?/ must be assumed = x-'/lx + «)

;

for then taking the flu. and reducing, there is found
A^ + a)

^ V —1J
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?J - 4aB; theref./-^^^ = \y - 4«b = {x- V [x + a)

- U-Q = |-x\/(r + a) - \a{x - 2«) x -JV(.r + «) =

In the same manner the student will find the fluents of

and of———. And in general, the fluentof-

being given = c, he will find the fluent of —77 -,
=

xn^{.v + a)- ^//c.
'SO. In a similar way we might proceed to find the fluents

of other classes of fluxions by means of other fluents in

the table of forms in volume 2 ; as, for instance, such as

xx^/ {dx — x'-)i x'^x \/{clx — x'-)y x^xV (c/:r — x'^) , &c, depend-

ing on the fluent of x<^{dx — .r^), the fluent of which, by
the 16th tabular form, is the circular semisegment to diame-

ter d and versed sine x^ or the half or trilineal segment con-

tained by an arc with its right sine and versed sine, the

diameter being d.

Ex. 1 . Putting then said semiseg. or fluent of x V{dx — x^)

= A, to find the fluent of xx\/(dx — x'^). Here assuming
3.

2/-=.{dx — X'Yi 3i^ti taking the fluxions, they are, y rr

^{dx — 2xx)^[(lx — x^)'^ hence xx'^iilx — x"-) — \dx\'^

{dx — x"^) — -^y -zz ~dA — |i ; therefore the required fluent,
3

fxx -/{dx— jr^), is ic/A — ^j/ = Ida— i-{dx — x-)^=B suppose.

Ex. 2. To find the fluent of x'^xVidx — x""), having that

of xx\/{dx — x^) given z=. b. Here assuming j/ = x[dx — x^)j

then taking the fluxions, and reducing, there results y =
{4:dxx — 4x-x)\^{dx — X-) ; hence x-x>^/(dx — x~) = -^dxx

\/{dx—x'^) — = I^B — ii, the flu. theref. o£x^x\/{dx—.v-)

is |6?B - |j/ = I^/b - ^x{dx — x^y^-.

Ex. 3. In the same manner the series may be continued

to any extent; so that in general, the flu. of x"-^ \/ [dx — x^)

being given r= c, then the next, or the flu. of x''x\/'{dx — x^)

will be ^^4- 4f'c —.t"-'{dx- .e)'.

31. To find the fluent of such expressions as -—-^
—-—

-

a case not included In the table of forms in vol. 2.

Put the proposed radical \/ (.r" ± 2ax] = 2, or x^- ± 2ax
=r z- ; then, completing the square, x' ± lax + a^= z^ + a",

and the root is .r ± a m v^C^^ + «^). The fluxion of this is

; theref. -rrTTTr-, = ,,,' „.^ 5 the fluent

of
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of which, by the 12th form, is the hyp. log. of; f v^(:"4- a')

= hyp. log. of j: ± a + \/(a- ± 2ux), the fluent required.

£!x. 2. To find now the fluent of —~ , having

riven, by the above example, the fluent of — = a

suppose. Assume V(.i^ + 2(/a:) = y
',

then its fluxion is

tci- + ax . p xx . X
.

•

= J ; theref. -"rr^-r =^ - 7-rrTrZT=^-«-^»

the fluent of which is j/ — ffA = v'^G^" + ^tsr.r) — a A, the

fluent sought.

JB.r. 3. Thus also, this fluent of --—^

—

—— being given>

the flu. ofthe next in the series, or -——'——r v/ill be found,

by assuming x^/ix^ -f 2«.r) =J/; and so on for any other

of the same form. As, if the fluent of —^—-,—r be given
'

^/{x^- + -lax) »

= c; then, by assuming x^~'^.s/{x'^ + 2t/x) = J/,
the fluent

of-—;—r— = — t"~W{x^ 4- 2rt.r) — «c.

£.t\ 4. In like manner, the fluent of -
, }
—

-;—: being
aJ\x ~ax)

given, as in the first example, that of —-;, _ ^. may be

found •, and thus the series may be continued exactly as in

the 3d ex. only taking — 2ax for + 2ax.

32. Again, having given the fluent of „'
Tn*

which,

by pa. 32 1 vol. 2, is — x circular arc to radius a and versed

x^x
sine.r, the fluents of—

—

'-
-, —-— , Sec . . ^—

—

may be assigned by the same method of continuation. Thus,

JG.r. 1. For the fluent of
.
„" _ ,

? assume ^/ {2ax ~ x''~)

= y \ the required fluent will be found = — \/(2fl.i'— .?'') +

A

or arc to radius a and vers. x.

Ex. 2. In like manner the fluent of —--— -r is
^{'2ax — .v«)

where A denotes the arc mentioned in the last example.

Ev. 3. And in general the fluent of

2«-l 1

^/{'i.x-x^)

-—-oc - —xn-W{2cix — .r^), where c is the fluent of

c"-' r

HUax-x') * ^^^^ ^^^^ preceding term in the series.

33. Thus
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33, Thus also, the fluent of .vv'(.v — a) being given, =
J.

^(x — uy, by the 2d form, the lluents of xx'/{x — «),
x^x\/(x — a), &c . . . ^''-xVix — a), may be found. And ia

general, if the fluent of x"~'xV{x — ^/) — c be ^iveu ; then
3

by assuming x"(x — o)^ —J/f the fluent of x' xv'ix — a) is

found = —^^^~x''(x — a)^ + —^c.

34. Also, given the fluent of (x — ayx, vv'hich is
;

(.V— «)" + ' by the 2d form, the fluents of the series (;<• - a) xx,

(x — aY'x^'x, &.C . . . (x —a)"'x"x can be found. And in ge-
neral, the fluent of (x — (/)"'.v"-'^- being given = c ; then
by assuming (x — a)"' + ^x" =^

J/s the fluenc of (a; — a'yx' x is

round = —^^
.

m + n + i

Also, by the same waj' of continuation, the fluents of
x^x\/{a ;iy x) and of x"x{(i ±; x)'" may be found.

3-5. When the fluxional expression contains a trinomial

q'lantity, as \^{b + cx + x'), this may be reduced to a bi-

nom.ial, by substituting another letter for the unknown one
fc, connected with half the coeflicient of the middle term
with its sign. Thus, put z = x-{-4:(-' '• then 2" — x- -f cx + ^c"

;

theref. z^ — -|r= Ar' \- cx, and z' -{- b — {f- — x' -\- cx + h

the given trinomial j which is = s'' + a', by puiting a'^ =
h - xt\

Ex. 1. To find the fluent of—^-^
r.-

^

Here z = a- -}- 2 ; then z- = x^ + 4^x -f 4, and z^ 4- 1 =
5 -1- 4a? f X-, also X = z; theref. the proposed fluxion re-

duces to —

—

——— ; the fluent of which, by the 12th form in

the 2d vol. is 3 hvp. log. of z -]- \/{l + z) = 3 hyp. log.

^ + 2 -t- '/{o + 4x -\- X-).

Ex. 2. To find the fluent of xs/{b-\- cx -f dx'^) — x \/d x

Here assuming x \- —= z ; then ;e- = z, and the proposed

\flux. reduces to z-^/dx \/(z- + -— —)~z^dx -v/(2^-|-a^),

putting a^ for — — ; and the fluent will be found by a

similar process to that employed in ex. 1 art. 27.

Ex. 3. In like manner, for the flu. of x"~'x\/(b + cx"-\-

dx-'% assuming x" + ~:=:z, iix"-^ x — z, and x''~'x = — z-,

hence
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hence -t''" + -f
^'' + ,4 = z\ and ^/(Jx^'' + c.V + b) =

X ^/(z- ± i^r)) putting ± a^ — -^ — j-; ; hence the given

fluxion becomes — s; -^d x ^(z^ ±a-),and its fluent as in

the last example.
rV — l

E.r» 4. Also, for the fluent of — : assume
b + ci + lU^

x" + -^ — z, then the fluxion maj-^ be reduced to the form

— X —'

, and the fluent found as before.

So far on this subject may suffice on the present occasion.

But the student who may wish to see more on this branch,

may profitably consult Mr. Dealtry's very methodical and

ingenious treatise on Fluxions, lately published, from which

several of the foregoing cases and examples have been taken

©r imitated.

CHAPTER XI.

ON THE MOTION OF MACHINES, AND THEIR MAXIMUM
EFFECTS.

Art. ] . When forces acting in contrary directions, or

in any such directions as produce contrary eflects, are ap-

plied to machines, there is, with respect to every simple ma-
chine (and of consequence with respect to every combination

of simple machines) a certain relation between the powers

and the distances at which they act, which, if subsisting in

any such machine when at re'^t, will always keep it in a state

of rest, or of i'/fl/uY// equilibrium •, and for this reason, be-

cause the efforts of these powers, when thus related, with

regard to magnitude and distance, being equal and opposite,

annihilate each other, and have no tendency to change the

state of the system to which they are applied. So also, if

the same machine have been put into a state oi iinijorm mo-
tion, whether rectilinear or rotatory, by the action of any
power distinct from those we are now considering, and these

two powers be made to act upon the machine in such motion

in a similar manner to that in which they acted upon it when
at rest, their simultaneous action will preserve it in that state

Qf
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of uniform motion, or of djjnamical equilibrium ; and this for

the same reason as before, because their contrary efFects de-

stroy each other, and have therefore no tendency to change

the state of the machine. But, if at the time a machine is

in a state of balanced rest, any one of the opposite forces be

increased while it continues to act at the same distance, this

excess of force will disturb the statical equilibrium, and pro-

duce motion in the machine ; and if the same excess of force

continues to act in the same manner, it will, like every con-

stant force, produce an accelerated motion •, or, if it should

undergo particular modifications when the machine is in dif-

ferent positions, it may occasion such variations in the motion

as will render it alternately accelerated and retarded. Or the

different species of resistance to which a moving machine is

subjected, as the rigidity of ropes, friction, resistance of the

air, &.C, may so modify a motion, as to change a regular or

irregular variable motion into one which is uniform.

2. Hence then the motion of machines may be considered

as of ^///'ee kinds. 1, That which is gradually accelerated,

which obtains commonly in the first instants of the commu-
nication. 2. That which is entirely uniform. 3. That which
is alternately accelerated and retarded. Pendulum clocks,

and machines which are m.oved by a balance, are related to

the third class. Most other machines, a short time after

their motion is commenced, fall under the second. Now
though the motion of a machine is alternately accelerated

and retarded, it may, notwithstanding, be measured by an
uniform motion, because of the periodical and regular repe-

tition which may exist in the acceleration and retardation.

Thus the motion of a second's pendulum, considered in re-

spect to a single oscillation, is accelerated during the first half

second, and retarded during the next : but the same motion
taken for many oscillations may be considered as uniform.

Suppose, for example, that the extent of each oscillation is

5 inches, and that the pendulum has made 10 oscillations:

its total effect will be to have run over 50 inches in 10 se-

conds 3 and, as the space described in each second is the

same, we may compare the effect to that produced by a

moveable which moves for 10 seconds wiih a velocity of 5
inches per second. We see, therefore, that the theory of
machines whose motions are uniform, conduces naturally to

the estimation of the efFects produced by machines whose
motion is alternately accelerated and retarded : so tiiat the
problems comprised in this chapter will be directed to those
machines whose motions fall under the first two heads ; such
problems being of far the greatest latility in practice.

Vol. III. R Defs,
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Defs. I . When in a machine there is a system of forced

or of powers mutual; y in opjjosition, those which produce or

tend to produce a certain ellect are called movers or waving'
powers; and those which produce or tend to produce an
effect which opposes those of the moving powers, are called

rtsistancts. If various movers act at the same time, their

equivalent (found by means of prop. 7, Motion and Forces)

is called individually the Dwvivgforce ; and, in like manner,
the resultant of all the resistances reduced to some one point,

the resistance. This reduction in all cases simplilies the in-

vestigation.

2. The impelled point of a machine is that to which the

action of the moving power may be considered as immedi-
ately applied ; and the working point is that where the re-

sistance arising from the work to be performed immediately

acts, or to which it ought all to be reduced. Thus, in the

wheel and axle, (Mechan. prop. 3'2), where the moving
power p is to overcome the weight or resistance w, by the

application of the cords to the Avheel and to the axle, B is the

impelled point, and a the working point.

3. The velocity of the moving pozeer is the same as the

\^elocity of the impelled point ; the velocity of the resistance

the same as tfiat of the working point.

4. The performance or ef'cct of a machine, or the work
done, is measured by the product of the resistance into the

velocity of the working point ; the ')no)/ienti{m of impulse is

measured by the product of the moving force into the velo-

city of the impelled point.

These definitions being established, we may now exhibit a

few of the most useful problems, giving as much variety in

their solutions as may render one or other of the methods of

easy application to any other cases which may occur.

PROPOSITION I.

//' R and r be the distances of the power p, ajid the weight

er resistance w ,J'rom thefulcriDn f of a straight lever ; then

will the velociti/ of the power and cf the weignt at the end of

any time t be —^ —^Z, and —/^^y respectively, the

weight and inertia of the lever itsef not being considered.

If the effort of the power ba- A_ ;• ii

lanced that of the resistance, P j^

would be equal to — . Conse- 1^ W^

quently, the difference between this value of P and its actual

value, or P — w, will be the force which tends to move

the
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the lever. And because this power applied to the point A

accelerates the masses P and w, the mass to be substituted

for w, in the point A, must be -^w, (Median, prop. 50) m
order that this mass at the distance R. may be equally accele-

rated with the mass \v at the distance R. Hence the power

P — - w will accelerate the cjuantity of matter p + -^ w ; and

the acceleratmg force f rr (
p w) -^ (p + ~z^) = "

pr^+ ,
-w'

But (vol. ii. p. 335) r oc rt or is = gtv [g being = 32a feet)

;

which in this case = j-^rw
^ ^^^^ velocity of P. And

because veloc. of p : veloc. of w : : R : r, therefore veloc of

r , ^ r n^p-Rcw ^ rip — j-ww = — veloc. of P = — X -^ —g^ — -, TTU • o ^•

Cor. 1. The space described by the power in the time ^,

•Virill be= —TJipi
, Igi^i the space described by w in the

R-P+ r-w 20 ' r J

R 7' P— T^ \V

same time will be = ~ . i-s:t^.

Cor. 2. UT^. : r : : n : 1, then will the force which acce-

lerates A be =: .

Cor. 3. If at the same time the inertia of the moving

force P be — 0, as in muscular action, the force accelerating

...
,

pii'^-wn
A Will be = .w

Cor. 4. If the mass moved have no weight, but possesses

inertia only, as when a body is moved along a horizontal

plane, the force which accelerates A will be = —;; •. And

either of these values may be readily introduced into the in-

vestigation.

Cor. 5. The work done in the time t, if we retain the ori-

,
. .,, ,

Krp— r^w , RTPW— r^w^ J
ginal notation, will be ~ —gt x w =

,

— . gi.^

Cor. 6. When the work done is to be a maximum, and we
wish to know the weight when P is given, we must make
the fluxion of the last expression rr 0. Then we shall have

rR^p- — 2rR"PW — rHv^ = and \v=pxrV(— + ) -J.

Cor. 7. If R : r : : n : 1 , the preceding expression will

become w = p x [\/(n'* + ii') — n'-'\.

Cor. 8. When the arms of the lever are equal in length,

that is, when nn 1, then is w = p x ( V^ — 1):^ '414214?,

or neai-ly -^^ of the moving force.

R 2 Scholium.
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Scholium.

If we in like manner investigate the formulae relating to
motion on the axis in peritrochio, it will be seen that the
expressions correspond exactly. Hence it follows, that when
it is required to proportion the power and weight fco as to

obtain a maximum elfoct on the wheel and axle, (the weight
of the machinery not being considered), we may adopt the

conclusions of cors. 6 and 7 of this prop. And in the ex-

treme case where the wheel and axle becomes a pulley, the
expression in cor. S may be adopted. The like conclusions

may be applied to machines in general, if R and r represent

the distances of the impelled and working points from the

axis of motion j and if the various kinds of resistance arising

from friction, stiffness of ropes, &c, be properly reduced to

their equivalents at the working points, so as to be compre-
hended in the character w for resistance overcome.

PROPOSITION II.

Given R and r, the arms ofa straight lever, m andtn thtir

respective weights, and p the power acting at the extremiti/

of the arm r ; to find the weight raii^ed at the extremity of
the other arm when the effect is a maximum.

In this case ^m is the weight of A F B
the shorter end reduced to B, and 1 '

J

conseq. -^ is the weight which, ^ V»%j

applied at A, would balance the shorter end : therefore

—
-I w, would sustain both the shorter end and the

2r R '

weight w in equilibrio. But P + iM is the power really

acting at the longer end of the lever ; consequently

p 4- 4m — (^ -I— w), is the absolute moving power. Now

the distance of the centre of gyration of the beam from f*

* Thr; distance of r, the centre tit' ixyratiori, from c the centre or axis of

motion, in some of the mo'st useful cases, is as below :

In a circular wheel of uniform tliickness ..... ca = rad. ^f.
In the periphery of a circle revolving about the diam. en = rati. ^f.
In the plane of a circle .... d tto , . . . CR = ^lail.

In the surface of a sphere . . . ditto .... en = rad. ^|.
In a solid sphere ditto . . , . cit = >ad. ^i.

In a plane ring formed of circles whose radii are R, r, ? ^ "

revplving about centre J "^^'2u»— 2r»"

In a cone revolving about its vertex CR = ^V"*''''*'i'*
In a cone its axis cr = v^yv^ji*

la iitraiffiit lever whose arms are a and r . , . . or = j^- :.^ •\v. + t)

is
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is = v/^T——^> which let be denoted by f ; then (Mechan.

prop. 50)-^ . (m -1- w?) will represent the mass equivalent

to the beam or lever when reduced to the point A i while

the weight equivalent to w, when referred to that point,

will be —w. Hence, proceeding as in the last prop, we

shall have -^ . (m -|- w?) + p + — W for the inertia to be

overcome; and (p + -^m -^^--w)-f- J,(m -\-m)-{-p-Y^vr

= the accelerating force of P, or of W reduced to A, Mul-
tiply this by \v ; and, for the sake of simplifying the pro-

cess, put ^ for p + ^M ~-, and n for ? + ~(m + m),

rw*
qvf

then will ^— be a quantity which varies as the effect

n +—

w

X'aries, and which, indeed, when multiplied by gty denotes
the effect itself. Putting the fluxion of this equal to no-
thing, and reducing, we at length find

w = -v/(— -^ -;r) - V
Cor. When r •=. ;•, and M == WJ, if we restore the values

of 71 and g, the expression will become w = 'v/(2p* -j- 2mP
+ pn') - (p + |/«).

PROPOSITION III.

Given the length I and angle e of elevation of an inclined

plane bc ; tofind the length l of another inclined plane ac,
along which a given weight w shall be raisedfrom the hori-

zontal line AB to the point c, in the least time possible, by
means of another given weight p descending along the given
plane c b : the two weights being connected by an inextensiblc

thread pcw running always parallel to the two planes.

Here we must, as a preliminary C^

to the solution of this proposition, /Va\V
deduce expressions for the motion "Po// \\3®
of bodies connected by a thread, and ^^ j \ ^v
running upon double inclined planes. /. .^—V-^—-^
Let the angle of elevation cad be * \
E, while e is the elevation cbd. H\
Then at the end of the time t, p

will have a velocity v ; and gravity would impress upon it,

in the instant / following, a new velocity = ^ sin f . ^, pro-

vided
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vided t)ie weight p were then entirely free : but, by the dis-«

position of the system, v will be the velocity which obtains

in reality. Then, estimating the spaces in the direction CP,

as the body w moves with an equal velocity but in a contrary

sense, it is obvious that, by applying the 3d Law of Motion,

the decomposition may be made as follows. At the end of

the time t + t we have, for the velocity impressed on,

I

7; + 11 effective vtlac. from c towards B.

g^me.t — v velocity cie^troyed.

f —v— v . . . effective veloc. fram c towards A.
W. — D + ff sin E .<, where <

• •
i •» i . 1

'

" '

I D + gsn z . t, . . . . velocity r1e>troyed.

If, therefore, gravity impresses, during the time t, upon the

masses p, w, the respective velocities g sin c . t — r, and g
sin E . ^ -}- f, the system will be in equilibrio. The quan-»

titles of motion being therefore equal, it will be

p^' %\n e . t — pv rz \vi' sin E . / -|- wv.

Whence the effective accelerating force is found, i. e.

i/ p S 11 f" — W -1
I E

e = — = X g.

Thus it appears that the motion is tmiformly varied, and w§
readily find the equations for the velocity and space frorn

which the conditions of the motion are deermined : viz,

p *in e — w sill E p --in e — w s ii E
-0 — . . . s

—
. \gt-.

P + \V P + w ''-

X he latter or these two equations gives i^ = 7— —-—
-.

But in the triangle abc it is ac : bc : : sin u : sin A, that is,

L : / : : sin e : sin e : hence — l = sin t\ and — / = sin e ;

m being a constant quantity always determinable from the

data given. And i'^ becomes . Now when any
i^ (_PL - w/)

m
quantity, as /, is a miniiTium, its square is manifestly a mini-

mum : so that substituting fori its equal l, and striking out
I
^

the constant factors, we have — a min. or its fluxion
PL — w/

2ll(pI. - wO- PlH"
,, tt • 11 • -1— = 0. Here, as in all similar cases, since

(.PL — w/)^ ' '

|:he fraction vanishes, its numerator must be equal to 0-, con-
seq'-.ently 2pl''-— 2w/l — pl^ = 0, PL =r 2w/, or L : / : :

2w : p.

Cor. 1. Since neither sin e nor sin E enters the final

equation, it follows, that if the elevation of the plane bc is

not given, the problem is unhmited,
Co)\
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Cor. 2. When sin e = 1 , bc coincides with the perpen-

dicular CD, and the power p acts with all its intensity upon the

weight w. This is the case of the present problem which
has commonly been considered.

Sc/w/ium.

This proposition admits of a neat

geometrical demonstration. Thus,
let CE be the plane upon which, if

w were placed, it would be sus-

tained in equilibrio by the power p

on the plane cb, or the power p'

hanging freely in the vertical CD

;

then (Mechan. prop. 23) BC : CD CE P :
p'

: W. But
w is to the force wirh which it tends to descend along
the plane CA, as CA to cD ; consequently, the weight p' is to

that force, a:i CA : cE ; or the v/eight p on the plane EC, is to

the same force in the same ratio ; because either of these

weights in their respective positions would sustain w on CE.

Therefore the excess of P above that force (which excess is

the power accelerating the motions of p and w) is to p, as

CA — CE to CA ; or, taking CH = ca, as EH to Ca. Now,
the motion being uniformly accelerated, we have s cc ft*, or

T^ oc — ; consequently, the square of the time in which AC

EH

AC
is described by w, will be as Ac directly, and as

verselv ; and v/ill be least when — is a 'minimum ; that is
EH

C, 2 ...
when —- + EH 4- 2cE, or (because 2ce is invariable) v/hen

c ^

-^+EH is a minimum. Now, as, when the sum of two
EH

quantities is given, their product is a maximum when they

are equal to each other ; so it is manifest that when their

product is given, their sum must be a minimum when they

are equal. But the product of— and eh is CE^, and con-
^ - EH

sequentlv given : therefore the sum of -^ and eh is least,

when those parts are equal ; that is, v/hen eh ::= CE, or

CA — 2cE. So that the length of tlie plane CA is double

the length of that on which the weight w would be kept iu

equilibrio by P acting along CB.

Vv'hen CD and cb coincide, the case becomes the same as

ihat considered by Maclaurin, in his Ficxi; of Newton''s Phi-'

losojj/iical Discoveries, pa. 1S:5, Svo. edit.

PROPOSITION
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PROPOSITION IV.

Let (he given weight p descend along cb, and hij means of

the thread pcw frunning parallel to the planes) draw a

•weight w up the plane Ac : it is required tojind the value of
w, wheji its momentum is a maximum, the lengths ami po-

sitions of the planes being given. (See the precedingf^.).

rr., ,
• r 1 1 • P .sin f— \v sin E .

The general expression tor the vel, is v= — gt,

which, bvsubstitut. —l for sin e, and — /for sin e, becomes

—{VL-Wl) --(PWL - W'/)

v = " gt. This mul. into w, gives gt\

which, by the prop, is to be a maximum. Or, striking out

the constant factors,—, gt, then is = a max. rut-
' VI ° P + w

ting this into fluxions, and reducing, we have p"l — 2pw/--

wH = 0, or w = v\/{-j + 1) — p.

Cor, When the inclinations of the planes are equal, L and

Zare equal, and w = P\/2 — p = p x (\/2 — 1) — -4142 P;
agreeing with the conclusion of the lever of equal arms, or

the extreme case of the wheel and axle, i. e. the pulley.

PROPOSITION V.

Given the radius n of a wheel, and the radius r, of its

axle, the weight of both, w, and the distance of the centre of
gyrationfrom the axis of motion, f ; also a given power p

acting at the circumference of the wheel ; tofind the weight

w raised by a cordfolding about the axle, so that its momen-
tum shall be a maximum.

The force which absolutely impels

the point a is p, while w acts in a

direction contrary to p, with a force =
— : this therefore subducted from P,
u

, rw HP — rw ^
leaves p =

, tor the re-
R R

duced force impelling the point A.

And the inertia which resists the com-
munication of motion to the point A will be the same as if

ttie mass ^ were concentrated in the point a (Me-

chan. prop. SO). If the former of these be divided by the

latter, the quotient -

"('"'~'
;

''"^)

j^ jj^g fQj.(.g accelerating A:

multiplying
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multlplylnc this by — , we have „ — for the force

which accelerates the weight win its ascent. Consequently

the velocity of \v Avill be = r/?' > which multi-

,. 1 • • Rrpw — r-\\^ J r 1 i
plied mto w gives i^i for the momentum. As

this is to be a maximum, its fluxion will = ; whence we

shall obtam w =^^ ^ ^ ^•

Cor. 1. When n = r, as in the case of the single fixed
p* p^

pulley,then \v= \^{2p-b?-{-2-rv§^w+~'w^-\-pwb§^)—\w—f.

Cor, 2. When the pulley is a cylinder of unifora-i matter

f'=:|R', and the express. becomesw= 'Z [r\2p^+ ?,PZiJ -{-~w-y]

- ^a; - p.

Cor. 3. If, in the first general expression for the mo-

mentum of W, q be put = R> + g-w, we shall have —
= a maximum. Which, in fluxions and reduced, gives

w = ^^a . (Q + R/-P) - -^Q.

Cor. 4. If the moving force be destitute of Inertia, then
will c^n f-Wf and w, as in the last corollary.

PROPOSITION VI.

Let a given power p be applied io the circumference ofa
wheels its radius u, to raise a xi'eight w at its axle, xvhose

radius is r, it is required to Jiiid the ratio of r and r when
w is raised with the greatest vwmentum ; the characters vr

and p denoting the same as in the last proposition.

Here we suppose r to vary in the expression for the mo-

mentum of w, ~—— —g^- And we suppose, that by the

conditions of any specified instance, we can ascertain what
quantity of matter q shall make r^q — fw, which, in fact,

may always be done as soon as v/e can determine p. The ex-

pression for the work will then become —-——'—
gt. The

fluxion of which being made = 0, gives, after a little reduc-
r^Fp'-w^ + p2(o + w)]— pw

tion, r— — —7 -.-T .
' T{q + W)

Cor. When the inertia of the machine is evanescent, with

respect to that of p -|- w, then is r ~ R\/(l -\ ) — 1.

PROPOSITION
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PKOPOSITION VII.

In amy wachine xt'hose motion accelerates^ the xceight will

honored with the greatest velocity^ "when the velocity of the

pozcer is to that of the weight, as 1 -1- p/(1 + — ) to 1 \ the

inertia cf the viachine being disregarded.

For any such machine may be considered as reduced to a

lever, or to a wheel and axle whose radii are R and r : in

which the velocity of the weight -; l~S^ (P''^^P' '^ ^^

be a maximum, r being considered as variable. Hence then,

following tlie usual rules, we find pu = r(w -\- v w''^- p\v).

From which, since the velocities of the power and weight are

respectively as R and r, the ratio in the proposition imme-
diately flows.

Cor. When the weight mo-ved is equal to the pozcer, then

is r: r :: i -l- \/2 : I : : 2-4142 : 1 nearly.

PROPOSITION VIII.

If in any machine whose motion accelerates, the descent of
one weipjit causes another to ascend, and the desceiuling

weight be given, the operation being supposed continually re-

peated, the effect will be greatest in a given time when the

ascending weight is to the descending weight, as 1 to TGI 8,

in the case of equal heights ; and m other cases, when it is

to the exact counterpoise in a ratio which is always between

1 to ll and 1 to 2.

Let the space descended be ] , that ascended 5 ; the de-

scending weight 1, the ascending v/eight — : then would the

equilibrium require te' = 5 ; and 1 —'— will be the force act-

ing on I. NovvT the mass —^, reduced to the point at which

the mass 1 acts, will be = —s"- = — : consequentlv the' WW ' '

si

whole mass moved is equivalent to 1 -f — , and the relative

force is (1 — ) -^ (1 H ) = -—
^,. But, the space be-

ing given, the time is as the root of the accelerating force
re 4- 4-*

invcrselv, that is, as \/ : and the whole effect in a given
'

' '
v> — s '

.
^

time, being directly as the weight rai'jed, and inversely as

the tirrte of ascent, will be as —v^ -; which must be a
to it + i^

maximum.
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iiiaximum. Conscquentlv Its sqviare ———
- must be a max.

iikewise. This latter expression, in lluxions and reduced,

gives w=-l-[\/{s' + 105 + 9) - <z + 3].

Here if 5 r: 1, X' rr —-^ : but if.? be diminished without

lipiit, re' = |5; if it be augmented without limit, then will

V(s- + 10a- 4- 0) approach indelinitely near to s + 5, and

consequently w = 2s. Whence the truth of the proposition

is manifest.

PROPOSITION IX.

Lei <p deriote the absolute effort of out/ movwgforce, Ziehen

it has no xelodty ; and suppose it not capable of any effort

zvhen the vclocily is \v; let f be the effort anszcerinff to the

velocity v ; then, if the Jorce be iinifonn, f xtill be r=

For it is the difference between the velocities w and v
which is efficient, and the action, being constant, will vary

as the square of the efficient velocity. Hence we shall have

this analogy, fs : F : : (w — Oj^ : (vv — v)' : consequently,

F =--
<^, )- ~ q{\ )-.
^ ^ w "

vv
'

Though the pressure of an animal is not actually uniform
during the whole time of its action, yet it is nearly so : so

that in general we may adopt this hypothesis in order to ap-

proximate to the true nature of animal action. On which
suppcsition the preceding prop, as well as the remaining one,

in this chapter, will apply to animal exertion.

Cor. Retaining the same notation, we have w VV's'>

This, applied to the motion of animals, gives this theorem:
The utmost velocifi/ with 'which an aniuud Jiot impeded can

move, is to the velocity iintli ichich it moves when ivipeded by

a green resistance, as the square root of its absolute force, to

the difference of the square roots of its absolute and ejjicient

forces.

PROPOSITION X.

To irive'^tigate expressions by means of which the maxi-^

omun effect, in machines whose motion is uniform, may be

deterviincd.

I. It follows, from the observations made in art. 1 and the

definitions in this chapter, that when a machine, whether
simple or compound, is put into motion, the velocities of the

impelled
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impelled and working points, are inversely as the forces which

are in equilibrio, when applied to those points in the direc-

tion of their motion. Consequently, ifj^' denote the resist-

ance when reduced to the working point, and t) its velccityj

while F and v denote the force acting at the impelled point,

and its velocity; we shall have FV — /t', or introducing t the

time, Fv/ = /zt. Hi'nce, in all "working niailiines which

have acquired an un>foym motion, theperjormcncc of the ma-
chine is equal to the momentum of impulse.

II. Let F be the effort of a force on the impelled point of

a maciiine when it moves \\\X.\\ the velocity V, the velocity

being Vv' when f = 0, and let the relative velocity w— v= w.

Then since (prop, ix) f = i^^ )', the momentum of im-

pulse FV will become v<p{— )' = ^ . -^ (w -- m) ; because

\ z= vf — u. Making this expression for fv a maximum,
or, suppressing the constant quantities, and making u^[\v — u)

a max. or its flux. = 0, when u is variable, we find 2w = 3Uf

or u = -|vv. Whence v = w — u — \v — |w = tW.

Consequently, when the ratio of y to v is given, by the

consiructwn of the machine, and the resistance is susceptible

of' variation.^ we must load the machine more or less till the

velocity of the impelled point, is one-third of the greatest ve-

locity of theforce; then will the work done be a maximum.
Or, the work done bj/ an animal is greatest, when the ve-

locify with which it moves, is one-third of the greatest velocity

with which it is capable of moving when not impeded.

III. Since f = f— = (p{--j-) = |f, in the case of the

maximum, we have fv =. ^<pv = 4^ . |w = -^%(pw, for the

momentum of impulse, or for the work done, when the ma-
chine is in its best state. Cojisequently, when the resistance

is a given quantity, we must make v : v : : 9f : 4<p ; and this

structure of the machine will give the maximum effect

IV. If we enquire the greatest effect on the supposition

that ^ only is variable, we must make it infinite in the above

expression for the work done, which would then become

WF, or v^

—

f, or w —ft, including the time in the formula.

Hence we see, that the sum of the agents employed to mot-e

a machine may be infinite, while the effect is finite: for the

variations of (p, which are proportional to this sum, do not

influence the above expression for the effect.

Scholium.
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Scholium.

The propositions now delivered contain the most mnterial

principles in the theory of machines. 1 he manner of ap-

plying several of them is very obvious : the application of

some, being less manifest, may be briefly illustrated, and the

chapter concluded with two or three observations.

The last theorem may be ap[)l!ed to the action ofmen and

of horses, with more accuracy than might at tirst be sup-

posed. Observations have been made on men and horses

drawing a lighter along a canal, and working several days

together. The force exerted was measured by the curva-

ture and weight of the track-rope, and afterwards by a spring

steelyard. The product of the force thus ascertained, into

the velocity per hour, was considered as the momentum. In

this way the action of men was found to be very nearly as

(\v — v)' : the action of horses loaded so as not to be able to

trot was nearly as (w— v)'% or as (w— v)^. Hence the

hypothesis we have adopted may in many cases be safely as-

sumed.
According to the best observations, the force of a man at

rest is on the average about 70 pounds j and the utmost ve-

locity with which he can w^alk is about 6 feet per second,

taken at a medium. Hence, in our theorems, (p = 70, and

W = 6. Consequently v = ^<p = Sl^lbs, tKe greatest force

a man can exert when in motion : and he will then move at

the rate of ^w, or 2 feet per second, or rather less than a

mile and a half per hour.

The strength of a horse is generally reckoned about 6 times

that of a man ; that is, nearly 420 lb;-, at a dead pull. His

utmost walking velocity is about 10 feet per second. There-

fore his maximum action will bo -i of 420= i86-|lbs, and he
will then move at the rate of 4 of 10, or 3- feet, per second,

or nearly 2i miles per hour. In both these instances we
suppose the foixe to be exerted in drawing a weight along

a horizontal plane ; or by raising a weight by a cord running

over a pulley, which makes its direction horizontal.

2. The theorems just given may serve to show, in what
points of view machines ought to be considered, by those who
would labour beneficially for their improvement.

The first object of the utility of machines consists in fur-

nishing the means of giiing lo the moving force the most

commodious direction ; and, when it can be done, of causing

its action to be applied immediately to the body to be moved.
These can rarely be united : but the former can be accom-

plished in most instances ; of which the use of the simple

lever,
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lever, pulley, and wheel and axle, furnish many examples.

The second object gained by the use of machines, is (ni ac-

cominodalion of the xdocitij of the. work to be pcrfoDnedy to

the velocity with lohich alone a natural power can act. Thus,
whenever the natural power acts with a certain velocity which
cannot be changed, and the work must be perfornied with

a greater velocity, a machine is interposed moveable round

a fixed support, and the di'itances of tlie impelled and work-
ing points arc taken in the proportion of the two given

velocities.

But the essential advantageof machines, that, in fact, which

properly appei'tains to the theory of mechanics, consists in

augmenting, or rather in modifying, the energy of the mov-
ing power, in such manner that it may produce effects of

which it would have been otherwise incapable. Thus a man
might carry up a flight of steps 20 pieces of stone, each

weighing 30 poimds (one by one) in as small a time as he
could (with the same labourj raise them all together by a

piece of machinery, that would huve the vclociaes of the

impelled and working points as 120 to 1 ; and, in this case>

the instrument would furnish no real advantage, except that

of saving his steps. But if a large block of 20 times 30, or

600 lbs. weight, were to be raised to the same height, it

would far surpass the utmost etibrts of the man, without the

intervention of some such contrivance.

The same purpose may be illustrated somewhat differently
;

confining the attention all along to machines whose motion

is uniform. The product y'u represents, during the unit of

time, the effect which results from the m.otion of the resist-

ance •, this niotion being produced in any manner whatever.

If it be produced by applying the moving force inimediately

to the resistance, it is necessary not only that the products

Fv and^l; should be equal ; but that a": the same time F = /,

and v = V : if, therefore, as most frequently happens, /'be

greater than F, it will be absoliitely impossible to put the re-

sistance in motion by applying the mbving force immediately

to it. Now machines furnish the means of disposing the pro-

duct FV in such a manner that it may always be equal tojv,

however much the factors of fv may differ from the analo-

gous factors iny't; ; and, consequently, of putting the system

in motion, whatever is the excess of/ over f.

Or, generally, as Pd. Prony remarks (Archi. Hydraul. art.

50 1-), machines enable us to clispose the factors of i\t in such

a manner, that vvhile that product continues the same, its fac-

tors may have to each other any ratio we desire. If, for in-

stance, time be precious, the effect must be produced in a very

short
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short time, and yet we should h:ive at command a force

capable of little velocity but of great eiTort, a machine must

be found to supply the velocity necessary for the intensity of

the force : if, on the contrary, the mechanist has only a weak
power at his disposition, but capable of a great velocity, a

machine must be adopted that will compensate, by the velo-

city the agent can communicate to it, for the force wanted :

lastly, if the agent is capable neither of great etFort, nor of

great velocity, a convenient machine may still enable him to

accomplish the effect desired, and make the product FV^ ot

force, velocity, and time, as great as is requisite. Thus, to

give another example: Suppose that a man, exerting his

strength immediately on a mass of 25 lbs, can raise it verti-

cally with a velocity of 4 feet per second ; the same man act-

ing'on a mass of lOOOlbs, cannot give it any vertical motion

though he exerts his utn^iost strength, unless he has recourse

to some machine. Now he is capable of producing an effect

equal to "25 x 4 x / : the letter i being introduced because,

if the labour is continued, the value of t v/ill not be inde-

finite, but comprised within assignable limits. Thus v.-e have

25 X 4 X ^ = 1000 X V X t; and consequently v — -J^ of

a foot. This man may therefore with a machine, as a lever,

©r axis in peritrochio, cause a mass of 1000 lbs to rise ,-5 of

a foot, in the same time that he could raise 25 lbs 4 feet

without a machine; or he may raise the greater weight as

far as the less, by employing 40 times as much time.

From what has been said on the extent of the effects which

may be attained by machines, it will be seen that, so long as

a moving force exercises a determinate effort, with a velocity

also determinate, or so long as the product of these is con-

stant, the effect of the machine will remain the same : thus,

under this point of viev/, supposing the preponderance of the

effort of the moving povt^er, and abstracting from inertia and

friction of materials, the convenience of application, &c, all

machines are equally perfect. But, from v/hat has been

shov/n, (props. 9, 10) a moving force may, by diminishing

its velocity, augment its effort, and reciprocally. There is

therefore a certain effort of the moving force, such that its

product by the velocity which comports to that effort, is the

greatest possible. Admitting the truth of the law assumed

in the propositions just referred to, we have, when the effect

is a Dia.rimutn, v = 4^\v, or f — ^<p ; and these two values

obtaining together, their product fV'P'^v expresses the value

of the greatest effect with respect to the unit of time. In

practice it will always be advisable to approach as nearly to

these values as circumstances will admit j for it cannot be

expected
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expected that they can always be exactly attained. But a

small variation will not be of much consequence : for, by a

well-known property of those quantities which admit of a

proper maximum and minimum, a value assumed at a mode-
rate distance from either of these extremes will produce no
sensible change in the effect.

If the relation of F to v followed any other law than that

which we have assumed, we should find from the expression

of that law values of f, v, &c, different from the preceding.

The general method however would be nearly the same.

With respect to practice, the grand object in all cases should

be to procure an uniform met ion, because it is that from which
(cteteris paribus) the greatest effect always results. Every
irregularity in the motion wastes some of the imneilingpower;

and it is the greatest only of the varying velocities which is

equal to that which the machine would acquire if it moved
uniformly throughout : for, while the motion accelerates, the

impelling force is greater than what balances the resistance

at that time opposed to it, and the velocity is less than what
the machine would acquire if moving uniformly ; and when
the machine attains its greatest velocity, it attains it because

the power is not then acting against the whole resistance. In

both these situations therefore, the performance of the ma-
chine is less than if the power and resistance were exactly

balanced j in which case it would move uniformly (art. 1).

Besides this, when the motion of a machine, and particularly

a very ponderous one, is irregular, there are continual repe-

titions of strains and jolts which soon derange and ultimately

destroy the whole structure. Every attention should there-

fore be paid to the removal of all causes of irregularity.

CHAPTER XII.

PRESSURE OF EARTH AND FLUIDS AGAINST WALLS AND
FORTIFICATIONS, THEORY OF MAGAZINES, &C.

PROBLEM I.

To determine the Pressure (f Earth against Walls.

When new-made earth, such as is used in forming ram-

parts, &c, is not supported by a wall as a facing, or by coun-

terforts and land-ties, &c, but left to the action of its weight

and the weather •, the particles loosen and separate from each

other,
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Other, and form a sloping surface, nearly regular; which

plane surface is called the natural slope of the earth ; and is

supposed to have always the same inclination or deviation

from the perpendicular, in the same kind of soil. In com-
mon earth or mould, being a mixture of all sorts thrown to-

gether, the natural slope is commonly at about half a right

angle, or 43 degrees ; but clay and stiffloam stand at a greater

angle above the horizon, while sand and light mould will only

stand at a much less angle. The engineer or builder must

therefore adapt his calculations accordingly.

Now, we have already given, at prop 45 Statics in vol. 2,

6th edition, the general theory and determination of the force

with which the triangle of earth (which would slip down if

not supported) presses against the wall

on the most unexceptionable principles, C B <tS-^
acting perpendicularly against ae at K,

fi|P|jk

or 4- of the altitude ae above the foun- lliiiillk^

dation at e ; the expression for which if |pi iV''iil %
force was there round to be —:——- m ; r>

where m denotes the specific gravity of "^
the earth of the triangle Abe.—It may be remarked that this

was deduced from using the area only of the profile, or trans-

verse triangular section ABE, instead of the prismatic solid of

any given length, having that triangle for its base. And the

same thing is done in determining the power of the wall to

support the earth, viz, using only its profile or transverse

section in the same plane or direction as the triangle A be.

This it is evident will produce tlie same result as the solids

themselves, since, being both of the same given length, these

have the same ratio as their transverse sections.

In addition to this determination, we may here further ob-

serve, that this pressure ought to be dininished in proportion

to the cohesion of the matter in sliding down the inclined

plane be. Now it has been found by experiments, that a

body requires about one-third of its weight to move it along

a plane surface. The above expression must therefore be

reduced in the ratio of 3 to 2 ; by which means it becomes

— '

^
-m for the true practical efficacious pressure of the

earth against the wall.

Since — , which occurs in this express'on of the force of

the earth, is equal to the sine of the Z. aeb to the rzJius 1,

put the sine of that ^ e = ^ ; also put a = ae the alticude

of the triangle ; then the above expression of the force, viz.

Vol. hi. S ae^ . ab«
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^^77Z, becomes ia'e^m, for the perpendicular pressure of

the earth against the wall. And if that angle be 45*, as is

usually the case in common earth, then is e* == i-, and the
pressure becomes -^ahn.

rROELEjM II.

To determine the Thickness of Wall to support the Earth.

In the first place suppose the section

of the wall to be a rectangle, or equally

thick at top and bottom, and of the same
height as the rampart of earth, like aefg
in the annexed figure. Conceive the

weight w, proportional to the area ge,
^

wi^'^
to be appended to the base directly be-

•low the centre of gravity of the figure. Now the pressure of

the earth determined in the first problem, being in a direction

parallel to ag, to cause the wall to overset and turn back
about the point F, the effort of the wall to oppose that effect,

will be the weight w drawn into FN the length of the lever

by which it acts, that is w x fn, or aefg X fn in general,

whatever be the figure of the wall.

But now in case of the rectangular figure, the area GE = AE
X iEv= ax, putting a = ab the altitude as before, and x = ef

the required thickness ; also in this case fn = -'ef = 4^, the

centre ofgravity being in the middle of the rectangle. Hence
then ax x ^x = \ax'^y or rather \ax^n is the effort of the

wall to prevent its being overturned, n denoting the specific

gravity of the wall.

Now to make this effort a due balance to the pressure of

the earth, we put the two opposing forces equal, that is

^ax'-yi = -l-a^e^mf or ^x^7i zz ^a^c^iji) an equation which gives
*27fl

X n-j-aev/-— , for the requisite thickness of the wall, just to

sustain it in equilibrio.

Carol. 1. The factor ae^ in this expression, is = the line

ACi drawn perp. to the slope of earth be : theref. the breadth

X becomes = yAQ v^ , which conseq. is directly propor-

tional to the perp. aq.—When the angle at e is := 45°, or

half a right angle, as is commonly the case, its sine els= V\t

and the breadth of the wall x'=z ^w^—. Further, when

the wall is of brick, its specific gravity is nearly the same as

the
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the earth, or m rr n, and then its tliickness x = ja, or one-
third of its height.—But when the wall is of stone, of the
specific gravity 2|-, that of earth being nearly 2, that is,

m = 2, and 7i = 2i; then \/-^= v^j = -895, j-of which

is -298, and the breadth .r = 'SOSrtf = T^tf nearly. That is,

the thickness of the stone wall must be -[% of its height.

PROBLEM III.

To determine the Thickness of the Wall at the Bottom,
•when its Section is a Triangle, or coining to an Edge at

Top.

In this case, the area of the wall aep
is only half of what it was before, or
only iAE X EP = -fajr, and the weight
w = ^aj;n. But now, the centre of

gravity is at only ^ of fe from the line

AE, or FN = |fe =: -|^. Consequently
FN X w = f.v X -yi.vn z=. j-ax'n. This,

as before, being put = the pressure of
the earth, gives the equation ^ax'^n = ^a^e-m, or x^?i = -f-aVw,
and the root x, or thickness ef zz ae'/~-^z aV-^- for

the slope of 45®.

Now when the wall is of brick, or vi = n nearly, this be-

comes X = a \/^ =. 'iOSa = ~a, or -j% of the height nearly.

But when the wall is of stone, or m to w as 2 to ^|-, then

*/— = v'^, and the thickness x or a J-— = av^-j-%- =
•365a = -|a nearly, or nearly

-f
of the height.

T'ROBLEM IV.

To determine the Thickness of the Wall at the Top, when
the Face is not Perpendicular, but Inclined as the Front of
a Fortification fVall usuallj^ is.

Here gf represents the outer face of

a fort, AEFG the profile of the wall,

having AG the thickness at top, and ef
that at the bottom. Draw gh perp. to

EF ; and conceive the two weights w,
W, to be suspended from the centres of

gravity of the rectangle ah and the tri-

angle GHF, and to be proportional to their areas respectively.

Then the two momenta of the weights w, w, actin?; by the

levers fn, fm, must be made equal to the pressure of the

earth in the direction perp. to ae.

S 2 Now

•^w
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Now put the required thickness AG or eh zzx, and the
altitude AE or GH — a zs before. And because in such cases

the slope of the wall is usually made equal to i- of its altitude,

that is FH = |AE or |ff, the lever fm will be | of ~a =: tt^,
and the lever fn = fh + -;eh = \a -\- ir. But the area

of GHF = GH X |hf zz a X j\a = y'^ar = w, and the area

AH = AE X AG = rtT = w ; these two drawn into the respect-

ive levers fm, fn, give the two momenta, t\-uw = ~^a x
To«^ = rra^, and {^a + ix) x ax = iarx + jdx-y theref.

the sum of the two, (f fl.r* -f ^a^x -\- -^-^0^)11 must be = rsa^m,

or dividing by \an^ x* + ^ax -{- yya' = \dr- x — ; now add-

ing r^-^ar to both sides to complete the square, the equation

becomes x^ + ^ax + tV«' = |«* •
f- -r^(f the root ofwhich

is .r + i-a = « v^(,if + -^), and hence x =a v/(/^ +y^) - ia.

And the base ef = a\^(^T-\- —)
Now, for a brick wall, m = n nearly, and then the breadth

X = Av^CtV + I) - \a = -rVa\/34 — i-a = -ISQa, or almost

ja in brick walls.—But in stone walls, — = t» and x =
n

«\/(tV + -A) - j(i = Ti<'\/29 - la = -1 59a = ^\a nearly,

for the thickness AG at top, in stone walls.

In the same manner we may proceed when the slope is

supposed to be any ether part of the altitude, instead of 4- as

used above. Or a general solution might be given, by as-

suming the thickness =: — part of the altitude.

REMARK.

Thus then we have given all the calculations that may be

necessary in determining the thickness of a wall, proper to

support the rampart or body of earth, in any work. If it

should be objected, that our determination gives only such a

thickness of wall, as makes it an exact mechanical balance to

the pressure or push of the earth, instead of giving the

former a decided preponderance over the latter, as a security

against any failure or accidents. To this we answer, that

what has been done is sufficient to insure stability, for the

following reasons and circumstances. First, it is usual to

build several counterforts of masonry, behind and against the

wall, at certain distances or intervals from one another; which
contribute very much to strengthen th^ wall, and to resist the

pressure of the rampart. 2dly. We have omitted to include

the eft'ect of the parapet raised above the wall ; which must

add somewhat, by its weight, to the force or resistance of the

wall.
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wall. It is true we could have brought these two auxiliaries

to exact calculation, as easily as we have done for the wall

itself: but we have thought it as well to leave these two ap-

pendages, thrown in as indetera^iinate additions, above the

exact balance of the wall as before determined, to give it an

assured stability. Besides the^e advantages in the wall itself,

certain contrivances are also usually employed to diminish

the pressure of the earth against it : such as land-ties and

branches, laid in the earth, to diminish its force and push

against- the wall. For all these reasons then, we think the

practice of making the wall of the thickness as assigned by

our ihecry, may be safely depended on, and profitably

adopted j as the additional circumstances, just mentioned,

will suiiiclently insure stability ; and its expense v/jll be less

than is incurred by any former theory,

PROBLEM v.

To determijie the 2uantit}j of Pressure susiained h\j a Dam
or Sluice, viade to 'pen up a Bodi/ of JVater.

By art. 313 Hydrostatics, vol. 2, 6th edit, the pressure of

a fluid against any upright surface, as the gate of a sluice or

canal, is equal to half the weight of a column of the fluidt

whose base is equal to the surface pressed, and its altitude

the same as that of the surface. Or, by art. 3 14- of the same,

the pressure is equal to the weight of a column of the fluid,

whose base is equal to the surface pressed, and irs altitude

equal to the depth of the centre of gravity below the top or

surface of the water; which comes to the same thing as the

former article, when the surface pressed is a rectangle, be-

cause its centre of gravity is at half the depth.

£x. 1 . Suppose the dam or sluice be a rectangle, whose
length, or breadth of the canal, is 20 feet, and the depth of
water 6 feet. Here 20 x 6 = 1'20 feet, is the area of the

surface pressed ; and the depth of the centi e of gravity bein^r

S feet, viz, at the middle of the rectangle; therefore 120 x
3 = 5*60 cubic feet is the content of the column of water.

But each cubic foot of water weighs 1000 ounces, or 62^
pounds; therefore 360 x 1000 = 360000 ounces, or 22500
pounds, or 10 tons and 100 lb, is the weight of the column
of water, or the quantity of pressure on the gate or dam.

Ex. 2. Suppose the breadth of a canal at the top, or sur-

face of the water, to be 24 feet, but at the bottom only 1<5

feet, the depth of water being 6 feet, as in the last example

:

required the pressure on a gate which, standing across the
canal, dams the water up .'*

Here
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Here the gate is in form of a trapezoid, j^n jr n
having the two parallel sides ab, cd, viz, Mii-'i''^' imi'iKj

AB = L'4, and CD = 16, and depth 6 feet. W '-
/

Now, by mensuration, problem 3 vol. 2, tj
; ;

. ;/

Kab + CD) X 6 = 20 X 6 = 120 the area c f "i^' ^:^

of the sluice, the same as before in the 1st \ •.

example : but the centre of gravity cannot •.
i /

be so low down as before, because the \ ••> !

figure is wider above and narrower below, '•, •

/

the whole depth being the same. /
Now, to determine the centre of gravity '•/

K of the trapezoid ad, produce the two
sities AC, BD, till they meet in g; also draw GitE and CH
perp. to AB : then ah : ch : : ae : ge, that is, 4 : 6 : : 12 :

18 = GEj and ef being = G, theref. fg = 12. Now, by
Statics art. 229 vol. C, EF = 6 = -}eg gives f the centre of
gravity of the triangle abg, and fI := 4 = -^-fg gives i the

centre of gravity of the triangle cdg. Then assuming k to

denote the centre of ad, it will be, by art. 212 vol. 2, as the

trap. AD : A cdg : : if : fk, or A abc — A cdg : A CDG : :

IF : FK, or by theor. 88 Geom. ge''— gf^ : gf^ : : if : fk,

that is 1
8* - 1 2Uo 1 2^ or 3^ — 2^ to 2^ or 5 : 4 : : IF = 4 :

V = 3i- = FK ; and hence ek = 6 — 3f = 2| = V is the

distance of the centre k below the surface of the water. This

drawn into 120 the area of the dam-gate, gives 33G cubic

feet of water = the pressure, = 336000 ounces = 21000

pounds = 9 tons 80 lb, the quantity of pressure agr.inst the

gate, as required, being a 15th part less than in the first case.

Ex. 3. Find the quantity of pressure against a dam or

sluice, across a canal, which is 20 feet wide at top, 14 at

bottom, and 8 feet depth of water ?

PROBLEM VI.

To determine the Strono'est Angle of Position of a Pair of

Gaitsfor the Lock on a Canal or River.

Let AC, bc be the two gates, meet-

ing in the angle c, projecting out

against the pressure of the water, ab
being the breadth of the can;il or river.

Now the pre SI 're of the water on a

gate AC, is as the quantity, or as the

extent or length of it, Ac. And the mechanical effect of that

pressure, is as the le^-g.h of lever to the middle of AC, or as

AC itself. On both these accounts then the pressure is as

Ac:%
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AC*. Therefore the resistance or the strength of the gate

must be as the reciprocal of this AC\
Now produce Ac to meet bd, perp. to it, in d ; and draw

CE to bisect ab perpendicularly in E ; then, by similar tri-

angles, as AC : AE : : AB : ad; where, ae and ab being given

lengths, AD is reciprocally as AC, or AD* reciprocally as Ac^;

that is, ad'' is as the resistance of the gate ac But the re-

sistance of AC is increased by the pressure of the other gate

in the direction Be. Now the force in Bc is resolved into

the two BD, Dc; the latter of which, DC, being parallel to

AC, has no effect upon it ; but the former, bd, acts perpen-

dicularly on it. Therefore the whole effective strength or

resistance of the gate is as the product ad^ x bd.

If now there be put ab = a, and bd = x, then ad*= AB^
— BD^= rt^— r*; conseq. AD* X BD = (a* — a:-) X .v— a^x-—X^

for the resistance of either gate. And, if we would have this

to be the greatest, or the resistance a maximum, its fluxion

must vanish, or be equal to nothing: that is, a^x — Sx'x = Oj
hence a^ =: 3^*, and .r = u V-j- = jUy y = •5'J735«5 the na-

tural sine of 35° 16' : that is, the strongest position for the

lock gates, is when they make the angle A or b = 35" 16',

or the complemental angle ace or bcE=54<°44', or the

whole salient angle acb = 109° 2S'.

Scholium,

Allied to this problem, are several other cases In mechanics:

such as, the action of the water on the rudder of a ship, in

sailing, to turn the ship about, to alter her course ; and the

action of the wind on a ship's sails, to impel her forward ;

also the action of water on the wheels of v/ater-niills, and of
the air on the sails of wind-mills, to cause them to turn

round.

Thus, for instance, let ^fi^;;^ E
ABC be the rudder of a

ship ABDE, sailing in the

direction bd, the rudder

placed in the oblique posi-

tion BC, and consequently

striking the water in the
~

direction cf, parallel to bd. Draw bf perp. to EC, and EC
perp. to CF. Then the sine of the angle of incidence, of the
direction of the stroke of the rudder against the water, will

be BF, to the radius CF ; therefore tlie force of the water
against the rudder will be as bF", by art. 3 pa. 366 vol. 2.

But the force bf resolves into the two bg, of, of which the
htter is parallel to the ship's motion, and therefore has no

effect
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effect to change it ; but the former bg, being perp. to the

ship's motion, is the only part of the force to turn the ship

about and change her course. But bf : bg : : cf : cr>, there-

fore CF : CB : ; bf* :
—'-—- the force upon the rudder to

Cf *

turn the ship about.

Now put a = CF, .r = BG ; then bf' =: a' — .r', and the

^ BC . bf'^ x{a'' — i') a^x — z^ 1^1 ^1
force — — = — ; and, to liave this a maxi-

CF a a '

mum, its flux, must be made to vanish, that is, dr:e — 3.r^jr=0;

and hence x = aV\ = bc = the natural sine of 35° 16' =
angle f j therefore the complemental angle c = 54" 44-' as

before, for the obliquity of the rudder, when it is most

efficacious.

The case will be also the same with respect to the wind

acting on the sails of a wind-mill, or of a ship, viz, that the

sails must be set so as to make an angle of 54° 44' with the

direction of the wind ; at least at the beginning of the mo-
tion, or nearly so v/hen the velocity of the sail is but small

in comparison with that of the wind ; but when the former

is pretty considerable in respect of the latter, then the angle

ought to be proportionally greater, to have the best effect, as

shown in Maclaurin's Fluxions, pa. 734, &c.

A consideration somewhat related to the same also, is the

greatest effect produced on a mill-wheel, by a stream of water

striking upon its sails or float -boards. The proper way in this

case seems to be, to consider the whole of the water as acting

on the wheel, but striking it only with the relative velocity,

or the velocity with which the water overtakes and strikes

upon the wheel in motion, or the difterence between the ve-

locities of the wheel and the stream. This then is the power

or force of the water ; which multiplied by the velocity of

the wheel, the product of the two, viz, of the relative velo-

city and the absolute velocity of the wheel, that is (v — r)i^=
yv — 'o'i will be the effect of the wheel ; where v denotes

the given velocity of the water, and v the required velocity

of the wheel. Now, to make the effect vv— v- a maximum,
or the greatest, its fluxion must vanish, that is Vt> — 2ut> = 0,

hence v = ^v; or the velocity of the wheel will be equal to

half the velocity of the stream, when the effect is the greatest;

and this agrees best with experiments.

A former way of resolving this problem was, to consider

the water as striking t!ie wheel with a force as the square of

the relative veloci y, and this multiplied by the velocity of

the wheel, to gi\e the effect ; that is, (v-vy-v :;= the eflect.

Nowtheflnx. of this product i5(v—vf-v-^ (v — t,') x2vv'=0',
hence
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hence v — v = 2v, or v ~ 3v, and v = -Wy or the velocity

of ihe wheel eq^^al oi:ly to ~ of the velocity of the water.

PROBLEM VII.

To determine ilie Form and Dimensions of Gunpowder
Magazines.

In the practice of engineering, with respect to the erection

of powiler n-;agazines, the exterior shape is usually made like

the roof of a house, having two sloping sides, forming two
inclined planes, to throw ofF the rain, and meeting in an

angle or ridge at the top ; while the interior represents a

vault, more or less extended, as the occasion may require;

and the shape, or transverse section, in the form of some
arch, both tor strength and commodious room, for placing

the powder barrels. It has been usual to make this interior

curve a semicircle. But> against this shape, for such a pur-

pose, I must ei:ter my decided protest ; as it is an arch the

farthest of any from being in equilibrium in itself, and the

weakest of any, by being unavoidably much thinner in one
part than in others. Besides, it is constantly found, that after

the centering of semicircular arches is struck, and removed,
they settle at the crown, and ri-,e up at the flanks, even with

a stra'ght horizontal form at top, and still much more so in

powder magazines with a sloping roof; which effects are

exactly what might be expected from a contemplation of the

true theory of arches. Now this shrinking of the arches

must be attended with other additional bad effects, by break-

ing the texture of the cement, after it has been in some de-

gree dried, and also by opening the joints of the voussoirs at

one Qnd. Instead of the circular arch therefore we shall in

this place give an investigation, founded on the true prin-

ciples of equilibrium, of the only just form of the interior^

which is properly adapted to the usual sloped roof.

For this purpose, put a =^ dk the

thickness of the arch at the top, x =
any absciss dp of the required arch

ADCM, u ~ KR the corresponding

absciss of the given exterior line ki,

and V = PC ~ Ri their equal ordi-

nates. Then by the principles of

arches, in my tracts on that subject,

it is found that ci or -jd = a -{ x —

u = a X
U r — xtj
'—r^—, or = Q X — , supposmg y a constant

quantity, and where a is some certain quantity to be deter-

mined hereafter. But kr or ti is= tj/, if i be put to denote
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the tangent of the given angle of elevation kir, to ildius Ij

and then the equation is 7^ = a + jt — (y = 5f

Now, the fluxion of the equation .-

•U) = a -{- X — ty, is ^ = X — /j, ^N.
and the 2d fluxion is-^^ = x, there- ^^ >!; - . J!>;.^

fore the foregoing general equation
^l|||i:||,|^^Nf5^,|]i;:5i^

becomes w = ^ ; and hence Ww 3=

H^, the fluent of which gives w^ =:

I'^-^ll

i/»
' " A a

-T- : but at D the value of zy is ir a, and w r: 0, the curve

at D being parallel to ki ; therefore the correct fluent is

o;* — a- = -— . Hence then y^ = -—
-, or y — f—- 1

the correct fluent of which gives j/ = Va X hyp. log. of

a

Now, to determine the value of q, we are to consider that

when the vertical line ci is in the position al or mn, then

•W = ci becomes n al or mn == the given quantity c sup-

pose, and J/
= AQ or qm =: b suppose, in which position the

last equation becomes b z:z Vo. "X. hyp. log. ——-
; and

hence it is found that the value of the constant quantity

k/ql, is -— -,—

—

— ; which being substituted for it, in^ ' h. I. c+ ^(c'2 — a^) ' o '

the above general value of j/, that value becomes

,

"
a , log. of W+ ^(w'2—a*)— log. a

y ~
.

^c+v^* - «-) — ^ lwg.otc+ ^(c»-a^)^ir^ »

log. ot
a

from which equation the value of the ordinate PC may always

be found, to every given value of the vertical ci.

But if, on the other hand, Pc be given, to And cr, which
will be the more convenient way, it may be found in the

following manner : Put A :r log. of <?, and c = -7- X log. of

—^^^- -\ then the above equation gives cy -J- a = log.

of w + \/{'<^' — or) > ^g^in, put n := the number whose log.

is cy + A ; then w :=: i^; -f- \/{W' — a^); and hence w =
n* + vP-—-— = CI.

Now, for an example In numbers, in a real case of this

nature.
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nature, let the foregoing figure represent a transverse vertical

section of a nmgaziue arch balanced in all its parts, in which
the span or width am is 20 feet, the pitch or height Da is

10 feet, thickness at the crown dk = 7 feet, and the angle
of the ridge lks 1 12' 3"', cr the half of it lkd = 56'> 18'^,

the compleinen. of which, or the elevation kir, is 33" 41'-^-,

the tangent of which is rr j, which will therefore be the
value of t in the foregoing investigation. The values of the
other letters will be as follows, \\z,vK — a = 7 i aq = 6=10;
Da= h=: 10; AL=r;= 10^ = ^i A=log. of 7 = -8450980;

c = ~ X log. of ^-^. '- r= ~h log. of -^— =z -rV

log. of 2-O6207 = -0408591; c?/ + A = -04085913/ -f
•8450950 = log. of n. From the general equation then, viz,

CI = a; = -^— — — ^ T.n, by assuming j/ successively

equal to 1, 2, 3, 4, &c, thence finding

the corresponding values of cy -|- a or

•040859 ly + -8450980, and to these,

as common logs, taking out the corre-

sponding natural numbers, which will

be the values of ?i ; then the above

theo-em will give the several values of

w or CI, as they are here arranged in

the annexed table, from which the

figure of the curve is to be constructed,

by thus finding so many points in it.

Otherwise. Instead of making 7i

the number of the log. cj/ + A, if we
put m = the natural number of the log.

cy only-, then m = ,andflm—w= v(a;-— «-),

or by squaring, &c, (rm- — 2a>nw -i-w^='w'- - «-, and hence
"'^ + 1 I'll 1 1 •

ty = —^~ X a : to which tne numbers being applied, the

very same conclusions result as in the foregoing calculation

and ttible.

Val. <,{y
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very proper for the structure of a powder mapjazine. For,

the inside paraboHc shape \vill be very convenient as to room

for stowage : 2dly, the exterior parabola, everywhere parallel

to the inner one, will be proper enough to carry off the rain

water : 3dly, the structure will be in perfect equilibrium :

and 4thly the parabolic curve is easily constructed, and the

fabric erected.

Put, as before, a =. kd, h = dq,

b = AQ, X = DP, and J/
= pc or ri.

Then, by the nature of the parabola

ADC, b'- :y h >^f
=. -^ -, hence

• ^ ho
constant. Then ci=-— X Q is = V^ = a constant quan-

y-i
^

bh
^

tity =: a, what it is at the vertex ; that is, ci is everywhere

equal to kd.
Consequently KR is rr dp ,• and since Ri is = pc, it is evi-

dent that Ki is the same parabolic curve with DC, and may
be placed any height above it, always producing an arch of

equilibration, and very commodious for pov/der magazines.

CHAPTER XIII.

THEORY AND PRACTICE OF GUNNERY.

In the 2d vol. of this course have been given several par-

ticulars relating to this subject. Thus, in props. 19, 20, 21,

22, p. 151 &c, is given all that relates to the parabolic theory

of projectiles, that is, the mathematical principles which
would take place and regulate such projects, if they were not

impeded and disturbed in their motions by the air in which
they move. But, from the enormous resistance of that me-
dium, it happens, that many military prc^jectiles, especially

the smaller balls discharged with the higher velocities, do
not range so far as a 20i;h part of what they would naturally

do in empty space ! That theory therefore can only be use-

ful in some few cases, such as in the slower kind of motions,

not above the velocities of 2, 3, or 400 feet per second, when
the path of the projectile differs but little perhaps from the

curve of a parabola.

Again,
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^Agaln, at pn. 160 &c, are given several other practical rules

and calculations, depending partly on the foregoing parabolic

theory, and partly on the results of certain experiments per-
formed with cannon balls.

Again, in prop. 58, pa. 219, are delivered the theory and
calculations of a beautiful military experiment, invented by
Mr. Robins, for determining the true degree of velocity with
which balls are projected from guns, with any charges of
powder. The idea of this experiment, is simply, that the
ball is discharged into a very large but moveable block of
wood, whose small velocity, in consequence of that blow, can
be easily observed and accurately measured. Then, from
this small velocity, thus obtained, the great one of the ball is

immediately derived by this simple proportion, viz, as the
weight of the ball, is to the sum of the weights of the ball

and the block, so is the observed velocity of the last, to a 4th
proportional, which is the velocity of the ball sought.—It is

evident that this simple mode of experiment w^ill be the source
of numerous useful principles, as results derived from the
experiments thus made, with all lengths and sizes of guns,
with all kinds and sizes of balls and other shot, and with all

the various sorts and quantities of gunpowder ; in short, the
experiment will supply answers to all enquiries in projectiles,

excepting the extent ot" their ranges ; for it will even de-
termine the resistance of the air, by causing the ball to strike

the block of wood at different distances from the gun, thus
showing the velocity lost by passing through those different

spaces of air ; all vv'hich circumstances are fully shown in

vols. 2 and 3 of my Tracts just published.

Lastly, in prob, 1 7 on Forces, near the end of volume 2,
some results of the same kind of experiment are successfully

applied to determine the curious circumstances of the first

force or elasticity of the air resulting from fired gunpowder,
and the velocity with which it expands itself. These are
circumstances which have never before been determined
with any precision. Mr. Robins, and other authors, it may
be said, have only guessed at, rather than determined them.
That ingenious philosopher, by a simple experiment, truly

showed that by the firing of a parcel of gunpowder, a quan-
tity of elastic air was disengaged, which, when confined in
the space only occupied by the powder before it was fired,

was found to be near 230 times stronger than the weight or
elasticity of the common atmospheric air. He then heated
the same parcel of air to the degree of red hot iron, and
found it in that temperature to be about 4 times as- strong as

before ; whence he inferred, that the first strength of the in-

flamed
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flamed fluid, must be nearly 1 000 times the pressure of the at-

nios;)here. But this was merely guessing at the dcg ee of heat

in the inflamed fluid, and consequently of its first strength,

both which in fact are found to be much greater. It is true

that this assumed degree of strength accorded pretty well

with that author's experiments ; but this seeming agreement,
it may easily be shown, could only be owing to the inaccuracy

of his own further experiments ; and, in fact, with far better

opportunities than fell to the lot of Mr. Robins, we have
shown that inflamed gunpowder is about double the strength

that he has assigned to it, and that it expands itself with the

velocity of about oOOO feet per second.

Fully sensible of the importance of experiments of this

kind, first practised by Mr. Robins with musket balls only,

my endeavours for many years were directed to the prosecu-

tion of the same, on a larger scale, with cannon balls ; and
having had the honour to be called on to give my assistance

at several courses of such experiments, carried on at Wool-
wich by the ingenious ofilcers of the Royal Artillery there,

under the auspices of the Masters General of the Ordnance,
I have assiduously attended them for many years. The first

of these courses was performed in the year 1775, being 2
years after my establishment in the Royal Academy at that

place : and in the Philos. Trans, for the year 1778 I gave an
account of these experiments, with deductions. In a memoir,
which was honoured with the Royal Society's gold medal of

that year. In conclusion, from the whole, the following Im-

portant deductions were fairly drawn and stated, viz.

Istf It is made evident by these experiments, that gun-
powder fires almost Instantaneously. 2cUj/, The velocities

communicated to shot of the same weight, with difl'erent

charges of powder, are nearly as the square roots of those

charges. 3rf/j/, And when shot of diff'erent weights are fired

with the same charge of powder, the velocities communicated
to them, are nearly in the Inverse ratio of the square roots

of their weights, 'ith/i/, So that. In general, shot which are

of different weights, and Impelled by the firing of difl'erent

charges of powder, acquire velocities v/hich are directly as

the square roots of the charges of powder, and inversely as

the square roots of the weights of the shot, 5thli/y It would
therefore be a great improvement in artillery, occasionally to

make use of shot of a long shape, or of heavier matter, as

lead ; for thus the momentum of a shot, when discharged

with the same charge of powder, would be increased in the

ratio of the square root of the weight of the shot ; which
would both augment pj-oportionally the force of the blow with

which
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which it would strike, and the extent of the range to which
it would go. Gthly, It would also be an improvement, to

diminish the windage ; since by this means, one third or

more of the quantity ofpowder might be saved. Ithhjy When
the improvements mentioned in the last two articles are con-

sidered as both taking place, it appears that about half the

quantity of powder might be saved. But, important as this

saving may be, it appears to be still exceeded by that of the

guns : for thus a small gun may be made to have the effect

and execution of another of two or three times its size in the

present way, by discharging a long shot of 2 or 3 times the

weight of its usual ball, or round shot ; and thus a small ship

might employ shot as heavy as those of the largest now used.

Finally, as these experiments prove the regulations with

respect to the weight of powder and shot, when discharged

from the same piece of ordnance ; so, by making similar ex-

periments with a gun varied in its length, by cutting off from
it a certain part, before each set of trials, the effects and ge-

neral rules for the different lengths of guns, may be with

certainty determined by them. In short, the principles on
which these experiments were made, are so fruitful in con-

sequences, that, in conjunction with the effects of the resist-

ance ofthe medium, they appear to be sufficient for answering

all the inquiries of the speculative philosopher, as well as

those of the practical artillerist.

Such then was the summary conclusion from the first set

of experiments with cannon balls, in the year 1775, and such

were the probable advantages to be derived from them, I am
2^ot aware however that any alterations were adopted from
them by authority in the public service : unless we are to

except the instance of carronades, a species of ordnance that

was afterwards invented, and in some degree adopted in the

public service; for, in this instance, the proprietors of those

pieces, by availing themselves of the circumstances of large

balls, and very small v/indage, have, with small charges of
powder, and at little expense, been enabled to produce very
considerable and useful effects with those light pieces.

The 2d set of these experiments extended through most
part of the summer seasons of the years 1783, 178 i, 1785,
and some in 1786. The objects of this course were nuitier-

ous and various : but the principal articles as follow : 1. The
velocities with which balls are projected by equal charges of
powder, from pieces of equal weight and calibre, but of dif-

ferent lengths. 2. The velocities with different charges of
powder, the weight and length of the guns being equal.

S. The greatest velocities due to the different lengths of guns,

to
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to be ascertained by successively increasing the cliarge, tlU

the bore should be iilled, or till the velocity should decrease

again. 4. The effect of varying the weight of the piece;

every thing else being the same. o. The penetrations of

balls into blocks of v/ood. 6. The ranges and times of flight

of balls; to compare them with their first velocities, for ascer-

taining the resistance of the medium. 7. The effect of wads;
of different degrees of ramming, or compressing the charge ;

of different degrees of windage ; of different positions of the

vent ; of chambers and trunnions, and every other cir-

cumstance necessary to be known for the improvement of

artillery.

An ample account is given of these experiments, and the

results deduced from them in my volume of Tr::cts published

in 1786; some few circumstances only of which can be noted
here. In this course, 4 brass guns were employed, very
nicely bored and cast on purpose, of different lengths, but

equal In all other respects, viz, in weight and bore, &c. The
lengths of the bores of the guns were,

the gun n'' 1, was 15 calibres, length of bore 28'.5 Inc.

. . . n° 2, . 20 calibres, .... 38*4

. . . n° 3, . 30 calibres, .... 57'7

. . . n" 4, . 40 calibres, .... 80-2.

the calibre of each being 2-^'^ inches, and the medium weight

of the balls 16 oz. 13 drams.
The mediums of all the experimented velocities of the

balls, with which they struck the pendulous block of wood,
placed at the distance of 32 feet from the muzzle of the gun,

for several charges of powder, were as in the following table>

Table of Initial Velocities.

PoMtler. The Gun?.

oz.

2
4

6

8

12

14

16

18

N-J. 1.
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It appears how the velocities increase with the charges of
powder, for eacli gun, and also how they increase as the
guns are longer, with the same charge, in every instance.

By increasing the quantity of the charges continually, for

each gun, it was found that the velocities continued to in-

crease till they arrived at a certain degree, different in each
gun ; after which, they constantly decreased again, till the
bore was quite filled with the charge. The charges of pow-
der when the velocities arrived at their maximum or greatest

state, were various, as might be expected, according to the
lengths of the guns ; and the weight of powder, with the
length It extended in the bore, and the fractional part of the
bore it occupied, are shown in the following table, of the
charges for the greatest effect.

Gun,
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gun, the time in seconds of the ball's flight through the ah',

and its range, or the distance where it fell on the horizontal

plane. From which it is hoped that some aid may be derived

towards ascertaining the resistance of the medium, and its

effects on other elevations, 5cc, and so afford some means of

obtaining easy rules for the cases of practical gunnery.

Though the completion of this enquiry, for want of time at

present, must be referred to another work, where we may
laave an opportunity of describing another more extended

course of experiments on this subject, which have never yet

been given to the public.

Another subject of enquiry

in the foregoing experiments,

was, how far the balls would

penetrate into solid blocks of

elm wood, fired in the direc-

tion of the fibres. The an-

nexed tablet shows the results

of a few of the trials that were

made with the gun n" 2, with

the most frequent charges of

2, 4, and 8 ounces ofpowder;

and the mediums ofthe pene-

trations, as placed in the last

line, are found to be 7, 15,

and 20 inches, M^th those charges,

nearly as the numbers

2, 4, 6, or 1, 2, 3 j but the charges of powder are as

2, 4, 8, or 1, 2, 4 ; so that the penetrations are propor-

tional to the charges as far as to 4 ounces, but in a less ratio

at 8 ounces ; whereas, by the theory of penetra ions, the

depths ought to be proportional to the charges, or, which is

the same thing, as the squares of the velocities. So that it

seems the resisting force of the wood is not uniformly or

constantly the same, but that it increases a little with the

increased velocity of the ball. This may probably be occa-

sioned by the greater quantity of fibres driven before the

ball ; which may thus increase the spring and resistance of

the wood, and prevent the ball from penetrating so deep as

it otherwise might do.

From a general inspection of this second course of these

experiments, it appears that all the deductions and observa-

tions made on the former course, are here corroborated and
strengthened, respecting the velocities and weights of the

balls, and charges of powder, &c. It further, appears also

that the velocity of the ball increases with the increase of

charge

PenetraUoNs of Balls into

solid Elm wood.
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charge only to a certain point, which is peculiar to each gun,

vvher? it is greatest; and that by further increasing the

charge, the velociLV gradually diminishes, till the bore is

quite full of powder. That this charge for the greatest ve-

locity is greiter as the gun is longer, but yet not greater in

so high a proportion a:; the length of the gun is ; so that the

part of the bore filled with powder, bears a less proportion to

the whole bore in the long guns, than it does in the shorter

ones; the part which is filled being indeed nearly in the in-

verse raiio of the square root of the empty part.

It appears that the velocity, with equal charges, always

increases as the gun is longer ; though the increase in velo-

city ii but very small in comparison to the increase in length;

the velocities being in a ratio somewhat less than that of the

square roots of the length of the bore, but greater than that

of the cube roots of the saine, and is indeed nearly in the

middle ratio between the two.

It appears, from the table of ranges, that the range in-

creases in a much lower ratio than the velocity, the gun and
elevation being the same. And when this is compared with

the proportion of the velocity and length of gun in the last

paragraph, it is evident that we gain extremely liitle in the

range by a great increase in the length of the gun, with the

same charge of powder. In fact the range is nearly as the

5th. root of the length of the bore ; which is so small an in-

crease, as to amount only to about a 7th part more range for

a double length of gun.—From the same table it also appears,

that the time of the ball's flight is nearly as the range ; the

gun and elevation being the same.

It has been found, by these experiments, that no difference

is caused in the velocity, or range, by varying the weight of

the gun, nor by the use of wads, nor by different degrees of

ramming, nor by firing the charge of powder in difTerent

parts of it. But that a very great difference in the velocity

arises from a small degree in the windage : indeed with the

usual established windage only, viz, about ^V of the calibre,

no less than between ^ and ^ of the powder escapes and is

lost : and as the balls are often smaller than the regulated

size, it frequently happens that half the poM^der is lost by
unnecessary windage.

It appears too that the resisting force of wood, to balls

fired into it, is not constant : and that the depths penetrated

by balls, with different velocities or charges, are nearly as the

logarithms of the charges, instead of being as the charges

themselves, or, which is the same thing, as the square of the

velocity.—Lastly, these and most other experiments, show,

T 2 that
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that balls are greatly deflected from the direction in which
they are projected : and that as much as 300 or 400 yards m
a range of a mile, or almost ith of the range.

We have before adverted to a 3d set of experiments, of

still more importance, with respect to the resistance of the
medium, than any of the former j but, till the publication of
those experiments, we cannot avail ourselves of all the dis-

coveries they contain. In the mean time however we may
extract from them the three following tables of resistances,

for three different sizes of balls, and for velocities between
100 feet and 2000 feet per second of time.

Tabll I.

Resi'tanres te a ball of 1905
vtches diameter, and 16 oz. 13 dr.

weight.

Vel. Resistances. 1 Dif. '2d Dif.

feet.

100
200
yoo
400
500
600
700
800
mo
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000

lbs.

17

0G9
1-50

2-81

4-50

6-69

9-4i
1'2-81

1694
'21-88

27-63

3413
41-31

49 06
57-25

65-69

74-13

8'2 44
90-44

98-06

ozs.
02.

11
2")

45
72
107
151

205
271

350
442
546
661

785
916
1051

1186
1319

1447
156!)

8i
14
20
'27

35
44
54
66
79
92
104
115

124

131

135

135

133

128

122

9

10
1'2

13

13

12

11

9

7

4

-2
-5
-6

Table II.

Resistances to a hall

2-78 in. diam. and
3lb. weight.

Vel.
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table, viz, that the resistances increase in a higher propor-

tion than the square of the velocities, with the same body

;

and that the resistances also increase in a rather higher ratio

than the surfaces, with different bodies, but the same velo-

city. Yet this latter case, viz, the ratios of the resistances

and of the surfaces, or of the squares of the diameters, which
is the same thing, are so nearly alike, that they may be con-

sidered as equal to each other in any calculations relating to

artillery practice. For example, suppose it were required to

determine what would be the resistance of the air against a

24 lb ball discharged with a velocity of 2000 feet per second

of time. Now, by the Ist of the foregoing tables, the ball

of 1-965 inches diameter, when moving with the velocity

2000, suffered a resistance of 98 lb: then since the resist-

ances, with the same velocity, are as the surfaces ; and the

surfaces are as the squares of the diameters ; and the diame-

ters being 1-965 and 5'6y the squares of which are 3'S6 and
31-36, therefore as 3-86 : 31-36 : : 98lb : 796 lb; that is, the

24 lb ball would suffer the enormous resistance of 79Glb in

its flight, in opposition to the direction of its motion !

And, in general, if the diameter of any proposed ball be

denoted by r/, and ;' denote the resistance in the 1st table

due to the proposed velocity of the 1'965 ball ; then —— will

denote the resistance with the same velocity against the ball

whose diameter is d ; or it is nearly {-d^r, which is but the

28th part greater than the former.

PROBLEM II.

To assign a Rulefor determining the Resistance due to anif

Indeterminate Velocity of a Given Ball.

This problem is very difficult to perform near the truth,

on account of the variable ratio which the resistance bears to

the velocity, increasing always more and more above that of

the square of the velocity, at least to a certain extent ; and
indeed it appears that there is no single integral power what-

ever of the velocity, or no expression of the velocity in one
term only, that can be proportional to the resistances through-

out. It is true indeed, that such an expression can be assigned

by means of a fractional power of the velocity, or rather one

whose index is a mixed number, viz, 2-r- or 2*1 : thus -r.
—

' ' ' " 5400
= the resistance, is a formula in one term only, which will

answer to all the numbers in the first table of resistances very

nearlv, and consequentlv, by means of the ratio of the squares

of
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of the diameters of the balls, for any other balls whatever.

This formula then, though serving quite well for some par-

ticular resistance, or even for constructing a complete series

or table of resistances, is not proper for the use of problems

in which fluxions and flueriis ure concerned, on account of

the mixed nunber 2 ,'7,-, in the index of ihe velocity v.

We must therefore J^ave recourse to an expression in two
terms, or a formula containing two integral peers of the

velocity, as v' and v. the first and 2d powers, affected with

general coefficients in and 11, as mv'' + nv zz r the resist-

ance. Now, to determine the general numerical values of

the coefficients m and n, we rnusi adapt tai- general ex-

pression mv^ + iiv = r, to two particular cases of velocity,

at a convenient distance from each other, in one of the fore-

going tables of resistances, as the first for instance. Now,
after making several trials in this way, I h ive found that the

two velocities of 500 and 1000 answer t)\e general purpose

better than any other that has been tried. Thus then, em-
ploying these two cases, we must first make v = 50'), and
r = 4ilb, its correspondent resistance ; a!id t!,en again v =
1000, and r = 21*88 lb, the resistance belonging: to it: this

will give two equations, by which the general value of ni and
of n will be determined. Thus then the two equations being

500-m + 500// — 4-5,

and I000v;z + lOOOw = 21-88;

dividing the 1st by 500, and the C 500/;/ + w = '009,

2d by 1000, they are . . 1 1000/;/ -{- n = -02188;

the dif. of these is 500/;/ = •(> 1288,

and therefore div. by 500, gives m = -00002576 ;

hence n — '009 — 500/;/ = -009 — -01288 = — -00388 —n.
Hence then the general formula will be -000025 7 61/' —
'003881/ =: r the resistance nearly in avoirdupois pounds, in

*li cases or all velocities whatever.

Now,
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Now, to fmd how near to the

truih this theorem comes, in

every instance in the table, by
substituting for r, in thisformula,

all the several velocities, 100,

'iOO, 300, &c, to 2000, these

give the correspondent values of

r, or the resistances, as in the 2d
column of the annexed tabic,

their velocities being in the first

column ; and the real experi-

mented resistances are set oppo-
site to them in the 3d or last

column of the same. By the

comparison of the numbers in

these tv'o columns together, it is

seen that there are no v/here any
great difference between them,
being sometimes a little in ex-

cess, and again a little in defect,

by verysmalldifferences; sothat,

on the whole, they will nearly

balance one another, in any par-

ticular instance of the range or

flight of a ball, in all degrees of its velocity, from the first or

greatest, to the smallest or last. Except in the first two or

three numbers at the beginning of the table, for the veloci-

ties 100, 200, 300, for which cases another theorem may be
employed. Now, in these three velocities, as well as in all

that are smaller, down to nothing, the theorem •0000n25'y*
= 7' the resistance, will very well serve, as it brings out for

the first three resistances 'IT, and '69, and l"55i, difibring

in the last only by a very small fraction.

Co7'oL 1 . The foregoing rule -000025761;^- •00S88r=r,
denotes the resistance for the ball in the first table, whose
diameter is 1*965, the square of which is 3-S6, or almost 4

;

hence to adapt it to a ball of any other diameter f/, we have
only to alter the former in proportion to the squares of the

diameters, by which it becomes -—(•000025 76 r^ — 'OOSSSr)

= (-000006671;^ — -00 1 t)fZ^= (-00000 |i;-— -001 r)</% which
is the resistance for the ball whose diameter is dy v/ith the

velocity v.

Corol. 2. And, in a similar manner, to adapt the theorem
'00001 725u'' zz r, for the smaller velocities, to any other size

of

Velocs.



280 THEORY AND PRACTICE

of ball, we must multiply it by j^, the ratio of the surfaces,

by which it becomes •O0O0O4r47f/-i'- = r.

We shall soon take occasion to make some applications in

the use of the foregoing formulas, after considering the elFccts

of such velocities in the cases of nonresistances.

PROBLEM III.

To determine the Height to which a Ball zi'ill rise, when

fired from a cannon Perpendicularly Upwards with a Given
relociliji in a Nonrcsisting ^Icdiunif or supposing no 7?<?-

sv-tance in the Air.

By art. 73 pa. 151 vol. 2, it appears that any body pro-

jected upwards, with a given velocity, will ascend to the

height due to the velocity, or tlie height from which it must

naturally fall to accjuire that velocity; and the spaces fallen

being as the square of the velocities ; also 16 feet being the

space due to the velocity 32 ; therefore the space due to any

proposed velocity r, will be found thus, as 32^ : 1 6 : : z'* : *

the space, or as 6i- : 1 : : v^ : -^v''= s the space, or the height

to which the velocity r will cause the body to rise, independ-

ent of the air's resistance.

Eram. For example, if the first or projectile velocity, be

2000 feet per second, being nearly the greatest experimented

velocity, then the rule -s\v'-= s becomes ^V ^ 2000- = 62500

feet = 11|^ miles ; that is, any body, projected with the ve-

locity 2000 feet, would ascend nearly 12 miles in height,

without resistance.

Carol. Because, by art. 88 Projectiles vol. 2, the greatest

range is just double the height due to the projectile velocity,

therefore the range, at an elevation of 45°, with the velocity

in the last exan»ple, would be 2H| miles, in a nonresisting

medium. We shall now see what the eilects will be with

the resistance of the air.

PROBLEM IV.

To determine the Height to which a Ball projected Up'
wards, as in the last problem, will ascend^ being Resisted Oy
the Atmosphere.

Putting X to denote any variable and increasing height as-

cended by the ball; x^Its variable and decreasing velocity there;

d the diameter of the ball, its weight being w, m =. -000003,

and n = "00
1

, the coeliicients of the two terms denoting the

law of the air's resistance. Then {mv' — )iv)d', by cor. 1 to

prob-
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prob. 2, will be the resistance of the air against the ball in

avoirdupois pounds ; to which if the weight of the ball be add-

ed, then {mv- — nv)(l--\-w will be the whole resistance to the

ball's motion ; this divided by w, the weight of the ball in

motion, gives = d + I = f the retard-

Ing force. Hence the general formula vv — 'Igfx (theor. 10

pa, 342 vol. 2, edit. 6) becomes —vv = 2fxX >

making V' negative because v is decreasing, where ^= 16 ft.;

and hence
tv '•!/ — IV TV

Now, for the easier finding the fluent of this, assume

•v — —- = z; then v zz z + —-, and v^ — z"- -\ z +-T-i»

and V'C = zk \- —-i, and v^ — —v + r—z = 2^> and v~ —

—V = z* — 7-- ; these beinsr substituted in the above value

of x^ it becomes x =

•-rt) " 2"! — ?!i Jj + p2 — rr ^zH-^a

putting p = ^, and f = £-, - p\ or p^ + ?^ =
£^,.

Then the general fluents, taken by the 8th and 1 1 th forms

vol. 2 pa. 307, give .r = ^^ x [i log. (z^+ ^^) + ^^ x arc

to rad. a. and tan. 2] = -

—

'- x U log. (t;" -v + -~-)4-

—- X arc to rad. q and tang, r — />]. But, at the beginning

of the motion, when the first velocity is v for instance, and
the space .r is = 0, this fluent becomes

= ^^ ^ t-^log. (v^ - I v +^) + ^ X arc radius g

tan. v — pi. Hence by subtraction, and taking v — for

the end of the motion, the correct fluent becomes

(arc tan. v ~ p — arc tan. — p to rad. y)].

But as part of this fluent, denoted by — x the dif. of the
f

two arcs to tans, y — p and — p, is always very small in com-
parison
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parison with the other preceding terms, they may be omitted

without material error in any practical instance j and then the

v' V -j-

fluent is x= ^, X hyp. log. f^ —, for the ut-

mrf*

most height to which the ball will ascend, when its motion
ceases, and is stopped, partly by its own gravity, but chiefly

by the resistance of the air.

But now, for the numerical value of the general coefficient

•—"—z, and the term — ; because the mass of the ball to the

diameter cI, is •5236^% if its specific gravity be s, its weight

will be ':jQ,36sd^ = w ; therefore —- — '5Q.Z6scL and -^, =

785405^, this divided by 4'^ or 64, it gives --^, = \Q,21-2sd

for the value of the general coefficient, to any diameter d
and specific gravity s. And if we further suppose the ball

to be cast iron, the specific gravity, or weight of one cubic

inch of which, is -26855 lb, it becomes 330^7, for that coeffi-

cient ; al,o lS54^Csd = 2l090d = --, and— = 150. Hence

the foregoing fluent becomes 330t/ X hyp. log.

v»_l,0v + 21090rf ^^„ , , v'-lSOv+giOQOd
-. ^ or /60a x com. \o<y. ,,,,, -,,

,

,

changing the hyperbolic for the common logs. And this is

a general expression for the altitude in feet, ascended by any

iron ball, whose diameter is d inches, discharged with any

velocity v feet. So that, substituting any values of d and v,

the particular heights will be given, to which the balls will

ascend, which it is evident will be nearly in proportion to the

diameter d.

Tjxam. 1. Suppose the ball be that belonging to the first

table of resistances, its weight being 16 oz. 13 dr. or 1-05 lb,

and its diameter 1-965 inches, when discharged with the ve-

locity 2C00 feet, being nearly the greatest charge for any iron

ball. The calculation being made with these values of ^/ and

1', the height ascended is found to be 2920 feet, or little more

than half a mile ; though found to be almost 1 2 m.iles with-

out the air's resistance. And thus the height may be found

for any other diameter and velocity.

Exayn. 2. Again, for the '24 lb ball, with the same velo-

city 2000, its diameter being 5-6 n d. Here "iQOd — 4256,

. v«-150v + 21090rf 38181 , , r y ^ - ,.cno-Q.
and gj^y-^ =

Y^gj-,
the log. of which is 1 -50908

,

theref.



OF GUNNERY. 283

theref. 1*50958 X 4256 = 6424' =;r the height, being a little

more than a mile.

.We may now examine what will be the height ascended,

considering the resistance always as the square of the velocity.

PROBLEM V.

To determine the Height ascended by a Ball projected as

in the twoforegoing problems; supposing the liesistanee of
the Air to be as the Square of the Velocity.

Here it will be proper to commence with selecting some
experimented resistance corresponding to a medium kind of

velocity, between the first or greatest velocity and nothing,

from which to compute the other general resistances, by con-

sidering them as the squares of the velocities. It is proper

to assume a near medium velocity and its resistance, because,

if we assume or commence with the greatest, or the velocity

of projection, and compute from it downwards, the resistances

will be everywhere too great, and the altitude ascended much
less than just j and, on the other hand, if we assume or com-
mence with a small resistance, and compute from it all the

others upwards, they will be much too little, and the com-
puted altitude far too great. But, commencing with a me-
dium degree, as for instance that which has a resistance

about the half of the first or greatest resistance, or rather a
little more, and computing from that, then all those com-
puted resistances above that, will be rather too little, but all

those below it too great; by which it will happen, that the
defect of the one side will be compensated by the excess on
the other, and the final conclusion must be near the truth.

Thus then, if we wish to determine, in this way, the alti-

tude ascended by the ball employed in the ist table of re-
sistances, when projected by 2000 feet velocity; we perceive
by the table, that to the velocity 20U0 corresponds the re-

sistance yS lb ; the half of this is 49, to which resistance

corresponds the velocity 1400 in the table, and the next
greater velocity 1500, with its resistance 57^, which will be
properest to be employed here. Hence then, for any other
velocity v, in general, it will be, according to the law of the

squares of the velocities, as 1500" \ v- : : 57i '''''

•000025^1/- = av\ putting a = -0000251, which will denote
the air's resistance for any velocity -y, very oearly, counting
from 2000.

^

Now let X denote the altitude ascended when the velocity

is
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is V, and ii^ the weight of the ball : then, as above, av^ Is ths

resistance from the air, hence av' -\- X£ is the whole resisting

force, and ^y'the retarding force;

thererore — w z=: 2gJ x = x '^gx\

and hence x = — x —^— = ^^ x —'~

'2g av' + m 2ga
^ _

w *

a

the fluent of which, by form 8, is ^-— X h. log. ("y* + — ) ;

which when j: = 0, and v = v the first or projectile velocity,

becomes = -— x h. 1. (v^ -\ ) ; theref. by subtract-
4ga ^ a '

ing, the correct fluent is ^= -— x h. 1. , the height

:v when the velocity is reduced to v\ and when v =. 0, or the

velocity is quite exhausted, this becomes -— x h. 1.

for the whole height to which the ball will ascend.

Ex. 1. The values of the letters being w=1'0j lb, 4o"=:64,

a = •000025|-, the last expression becomes 645 X hyp. log.
v^ + 4] 266 V* + 41266—TT-rr:.— , or 1484 X com. log. --:—. And here the first

v^ + 41'265
vel. V being 2000, the same expression 1484 x log.

^,

.".

becomes 1484 x log. of 97-93 =2955 for the height, as-

cended, on this hypothesis ; which was 2^20 by the former
problem, being nearly the same.

Ex, 2. Supposing the same ball to be projected with the

velocity of only 1500 feet. Then taking 1 100 velocity, whose
tabular resistance is 27'6, being next above the half of that

for 1500. Hence, as 1 100^ : v^ : : 27'6 : -00002375^/^ = av^.

This value of a substituted in the theorem — x h. 1.
'—

,

also 1500 for v, and r05 for a', it brings out x — 2728 for

the height in this case.

E.r. 3. To find the height ascended by the first ball, pro-

jected with 860 feet velocity. Here taking 600, whose re-

sistance 6'69 is a near medium; then as 600^ : 6*69 : : 1 :

•0000186 = a. Hence -^ X h. 1.
"^' ^ "" = 2334 the height;

64a 10 to '

which is less than half the range (5100) at 45° elevation, but

more than half the range (4100) at 15° elevation, in pa. 161

vol. 2 ; being indeed nearly a medium between the two.
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Ex. 4". With the same ball, and 1640 velocity. Assume

1200, whose resistance St' 1 3 is nearly a medium. Then as

1200- : 34-13 : : 1 : '0000237 = a. Hence -— x h. 1.
64(1 w

=2854; again less than half the range (6000) by experiment

in vol. 2, even with 15° elevation.

Ex. 5. For any other ball, whose diameter is d, and its

weight ty,the resistance or the air being -tt^= T50000
~ '^^

puttino; b zz , the retarding force will be
*^ o uouoo' *=

. "' *

1

*

„ • . 5f?'-j' + w 1 . — to vv I

thence — vv = 2S,x X , and x ——. x > and^ w 'Jg ba^v'^ + w

the cor. flu. .r=-—— X h. L —— = -ttt^ ><h-^-—
7„

—
for the whole height when v := 0. Now if the ball be a 2*

pounder, whose diameter is 5'6y and its square 3 1 "36 ; then

M»:=_!l^=: -0002091, and -^= -—=^ = 1794.',
500000 '

^gbd^ bUd"^ Hhd^

J , ,, , „„,, ,
IdH-^ + w 836+ 2-i 860 215

and od'^v = 836, and = ——— = -— = —r-

;

therefore x zz 1794 x h. 1. -^ = 1794 x 3-57888-6420,
o

being more than double the height of that of the small ball,

or a little more than a mile, and very nearly the same as in

the 2d example to prob. 4.

PROBLEM VI.

To determine the Time of the Ball's ascending to the

Height determined in the last prob. by the same Projectile

Velocity as there given.

By that prob. x =^ X "" > ther. 't =^ ~~- x

—

~ '

the fluent of which, by form 11, is -x-- v/-^ x arc to

,. ,
V — 1 Kl V

radius 1 tang. = —— \/— x arc tan. : or by cor-

V

—

V—
a a

rection t =. -~^— X (arc tang. arc tang.
)

(t a

the time in general when the first velocity v is reduced to

V. And when i» = 0, or the velocity ceases, this becomes

t ~ -r-v/— x arc to tang. for the time of the whole
V—

a

ascent.

Now,
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Now, as in the last prob. v= 2000, w= l-05, a= '0000254
229

-
9oo(,00(r

^^"^^
a = "^^-^^y ^"^ v/-^ = 203-14, and

V
--;-^ zz 9-8'145 the tangent, to which corresponds the arc

a

of 84*6', whose length is 1*4676; then— x 203*14 X

1 >.^w^ 203-14 xl'4676 „/, . , i , . ^1*4676 = = 9 'o, the whole time of ascent.

Reynark. The time of freely ascending or descending
through the same height 29.55 feet, that is, without the air's

29^5
resistance, would be ^—^= ^\/2955 = 13""59

; and the

time o( freely ascending, till all the velocity is lost, com-

mencing with the same velocity 2000, would be — = ^^
= 62"^ rz l'2"y. But the time of ascending freely through
the same space 2955, commencing with the same velocity

2000, would be only 14 seconds.

PROBLEM VII.

To determine the same as in prob. v, taking into the ac-

count the Decrease of Density in the Air as the Ball asceiicls

in the Atmosphere.

In the preceding problems, relating to the height and time
of balls ascending in the atmosphere, the decrease of density

in the upper parts of it has been neglected, the whole height

ascended by the ball being supposed in air of the same den-

sity as at the earth's surface. But it is well known that the
atmosphere must and does decrease in density upwards, in a

very rapid degree ; so much so indeed, as to decrease in geo-
metrical progression, at altitudes which rise only in arithme-

tical progression ; by which it happens, that the altitudes

ascended are proportional only to the logarithms of the de-

crease of density there. Hence it results, that the balls must
be always less and less resisted in their ascent, with the same
velocity, and that they must consequently rise to greater

heigiits before they stop. It is now therefore to be considered

what may be the diHerence resulting from this circumstance.

Now, the nature and measure of this decreasing density,

of ascents in the atmosphere, has been explained and deter-

mined in prop. 76, pa. 2 14, &c, vol. 2. It is there shown,
that if D denote the air's density at the earth's surface, and
d its density at any altitude a, or x ; then is x = 63551 X

log. of— in feet, when the tempeiature of the air is 55°
\

and 60000 X log. |^* for the temperature of freezing cold ;

we
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we may therefore assume for the medium .r= 62000 x log.—
for a mean degree between the two.

But to get an expression for the density d, in terms of x
out of logarithms, without which it could not be introduced
into the measure of the ball's resistance,in a manageable form,
we find in the first place, by a neat approximate expression

for the natural number to the log. of a ratio, — , whose terms

do not greatly differ, invented by Dr. Halley, and explained
n — -1/m the Introduction to our Logarithms, p. 110, that —y, ^ d

nearly, is the number answering to the log. / of the ratio ——>

where n denotes the modulus •43429448 &c of the common

logarithms. But, we before found that x= 62000 x log. of -^»

or "
'

is the log. of— , which log. was denoted by I in the

expression just above, for the number whose log. is / or

^^ ; substituting therefore —^ for /, in the expression

X

n—U ...
, ,

~
l'2400O—- X D, It gives the natural number X d = </, or

n + •

124000
124O00n-.r

7 , , • r , .

124000.1 +.r
— "* *"^ density of the air at the altitude .r, put-

ting D = 1 the density at the surface. Now put 124OO0?2 or

nearly 54000 — c ; then -^^* will be the density of the air
C -r X •'

at any general height x.

_
But, In the 5th prob. it appears that av^ denotes the re-

sistance to the velocity v, or at the height x, for the density
of air the same as at the surface, which is too great in the

ratio of c + X to c - .r ; therefore av^ X '-^ will be the
C + X

resistance at the height x, to the velocity v, where a —
•000025^. To this adding a;, the weight of the ball, gives

<^'^^ ^ hrv *" "^ ^°^ ^^^ "^^°^^ resistance, both from the air

and the ball's mass j conseq. ^ x ^-—^
-\- -^ will denote

the accelerating force of the ball. Or, If we include the

small part -^ or 1, within the factor '~_^, which will make
no sensible difference in the result, but be a great deal simpler

m the process, then is -^- X -j- =f the accelerating

force.
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force. Conseq. — iv = Q^gjx =. 2gx x X . ,

C + X w

and hence -—-x — ~ X —rr— > or by division, - Je +

t + x" ~ 32c: ^
+

Now the fluent of the first side of this equation is evi-

dently — 1• + 2c X h. 1. (c- 4- ^) ; and the fluent of the latter

side, the same as in prob. 5, is~ X h. 1. (v^ -\ ) ; there-
* Ola a

fore the general fluential equa. is — x -{- 2c x h. 1. (c + x)=3

-7— X h. 1. (v^ -\ ). But, when a:= 0, and r = v the initial

velocity, this becomes 0+ 2cx h.l.c =^ x h. 1. (v* + — ) 1

theref. by subtraction, the correct fluents are — ^ + 2c X h. 1.

=::rr- X h. 1. —;,— , when the first velocity v is dimi-

nished to any less one v ; and when it is quite extinct, the

state of the fluents becomes — x -^ 2c x h. 1. — zz. --- X
'

c 6-ia

h. 1. —-— , for the greatest height x ascended.

Here, in the quantity h. I. , the term x is alv/ays small

in respect of the other term c ; therefore, by the nature of
C ~f" T X XuT

logarithms, the h. 1. of

—

~ is nearly — —j- or ; theref.

, , r, , , 4fx 2rx— r« 2c—

x

the above fluents become — x -f- r= — n x =

-:— X h. 1. -. Now the latter side of this equation iff

the same value for x as was found in the 5th problem, which
therefore put =: b ; then the value of x will be easily found

from the formula —— x z: ^, by a quadratic equation. Or,

still easier, and sufficiently near the truth, by substituting b

for X in the numerator and the denominator of ^r
—— , then

^r—Tf.^ — t^y and hence x zz 7^-^, b, or by proportion as

• f — b : 2c -\- h : : b : X ; that is, only increase the value of

X, found by prob. 5, in the ratio of 2c — b to 2c -\ b.

Now, in the first example to that prob. the value of r or

h was there found := 2955 ; and 2c being = 108000, theref.

2c — b — 10504-5, and 2c +/;=:! 10955, then as 1050-t5 :

110955 : : 2955 : 3121 = the value of the height x in this

case, being only 166 fe*t, or i-'^th part more than before.

Also,
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Also, for the v5th example to the 5th prob. where x was =
6420; therefore as 2c- b : '2c-\-l> or as 105045 : 11095.5 >:

64-20 : 67fcO the heigin ascended in this example, being also

the 18th part more than before. And so on, for any other
examples ; the value of '2c being the constant number lOSOOO.

PUOELEM VIII.

To dtlermine the Time of a Bait's Ascevdmtf^ considering

the Decreasing Density of the Air as in the hist prcb.

The fluxion of the time is ^ rr — . But the general equa-

tion of the fluxions of the space .v and velocity v, in the last

, C-T, w —vv . . w c + x —vii
prob. was x= -r- X —

; ther. x — — x X —:—

.

^ c+jf 3'2 av~ + w o2 c— x av' + w^

hence ^or — =:^X^^— X -——- But x, which is al-

ways small in respect off, is nearly z: ^ as determined in the

last problem j theref. -— may be substituted for
'^-—~ with-^

out sensible error ; and then t becomes =: •r- x—-x "^
32 c— b av^ + i#

°

Now, this fluxion being to that in prob. 6, in the constant

ratio of c — ^ to c + ^, their fluents will be also in the same
constant ratio. But, by the last prob. c= 54000, and 6:r:2955

for the first example in prob. 5 ; therefore c — h z=. 51045,
and c -\- b zn 56955, also, the time in problem 6 was 9"'91

;

therefore as 51045 : oG955 : : 9 "'91
: 1 1"04 for the time in

this case, being l"*13 more than the former, or nearly the
9th part more ; which is nearly the double, or as the square

of the difi^erence, in the last prob. in the height ascended.

PUOELEM IX.

To determine the circumstances of Space, Time, and
Velocity^ of a Ball Descending through the Atmosphere bjf

its oxvn PVeighi.

It is here m.eant that the balls are at least as heavy as cast

Iron, and therefore their loss of weight in the air insensible;

and that their motion commences by their own gravity from a
state of rest. The first object of enquiry may be, the utmost
degree of velocity any such ball acquires by thus descending.

Now it is manifest that the ball's motion is commenced, and
uniformly increased, by its own weight, which is its constant

urging force, being always the same, and producing an equal
Increase of velocity in equal times, excepting for the diminu-
tion of motion by the air's resistance. It is also evident that'

Yoi., in,. U this
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this resistance, beginning from nothing, continually increases,

in some ratio, with the increasing velocity of the ball. Now,
as the urging force is constantly the same, and the resisting

force always increasing, it must happen that the latter will

at length become equal to the former : when this happens,

there can afterwards be no further acceleration of the mo-

tion, the impelling force and the resistance being equal, and

the ball must ever after descend with a uniform motion. It

follows therefore that, to answer the first enquiry, we have

only to determine when or what velocity of the ball will

cause a resistance just equal to its own weight.

Now, by inspecting the tables of resistances preceding

prob. 1, particularly the 1st of the three tables, the weight

of the ball being 1*05 lb, we perceive that the resistance in-

creases in the 2d column, till 0*69 opposite to 200 velocity,

and 1*56 answering to 300 velocity, between which two the

proposed resistance 1'05, and the correspondent velocity,

fall. But, in two velocities not greatly different, the resist-

ances are very nearly proportional to the squares of the ve-

locities. Therefore, having given the velocity 200 answering

to the resistance 0*69, to find the velocity answering to the

resistance 1'05, we must say, as 0*69 : 1-05 : : 200^ : v'^ =.

60870, theref. v — V60870 — 246, is the greatest velocity

this ball can acquire ; after which it will descend with that

velocity,uniformly, or at least with a velocity nearly approach-

ing to 246.

The same greatest or uniform velocity will also be directly

found from the rule •00001725^* = r, near the end of pro-

blem 2, where r is the resistance to the velocity Vy by making

l'Q5 = r; for then v^ =
,^^^^'^^^^

= 60870, the same value

for r* as before.

But now, for any other weight of ball ; as the weights of

the balls increase as the cubes of their diameters, and their

resistances, being as the surfaces, increase only as the squares

of the same, which is one power less \ and the resistances

being also in this case, as the squares of the velocities, we
must therefore increase the squares of the velocity in the

ratio of the diameters of the balls; that is, as 1*965 \ d \:

246- : ^^^d = u% and hence v z= 246v/-p^ — l75;Vc?.

If we take here the 31b ball, belonging to tlie 2d table of

resistances, whose diameter t/ is= 2*80; then ^/2-80= 1*673,

and 175^. x 1*67 = 294, is the greatest or uniform velocity,

with which the 31b ball will descend. And if we take the

Sib ball, whose diameter is 3*53 inches, as in tlie 3d table of

reiistances :
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resistances: then ^/3 53 = 188, and 175| x ISS — 330,

being the greatest velocity that can be acquired by the 6 lb

ball, and with which it will afterwards unifui^mly descend.

For a 91b ball, whose diameter is 4*04, the velocity will be
1754- X 2-01 = 353. And so on for any other size of iron

ball, as in the following table. Where the lirst column con-

tains the weight of the balls

in lbs ; the 2d their diame-
ters in inches ; the Sd iheir

velocities to which they

nearly approach, as a limit,

and therefore called their

terminal or last velocities,

with which they afterward

descend uniformly; and the

4tth. or last column the

heights due to those veloci-

ties, or the heights from
which the balls must descend

in vacuo to acquire them.
But it is manifest that the

balls can never attain exactly

to these velocities in any
finite time or descent, being

only the limits to which they continually approach, without

ever really reaching, though they arrive very nearly at them
in a short space of time ; as will appear by the following

calculation.

To obtain general expressions for the space descended, and
the time of the descent, in terms of the velocity v : put x =
any space descended, t — its time, and v the velocity ac-

quired, the weight of the ball w = 1*05 lb. Now, by the

theorem near the end of prob. 2, which is the proper rule for

this case, the velocity being small, •00001725;;* = cv^ is the

resistance due to the velocity v; theref. W — cv'^ is the impelling

force, and =y^ the accelerating force ; conseq. vv or

Wt.
ibs.
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uniform , as before remarked. We may however easily assign

the value of x a httle before the velocity becomes uniform,

or before cv^ becomes = w. Thus, when cv- = w, then

V = 246, as found in the beginning of this problem. Assume
therefore v a httle less than that greatest velocity, as for in-

stance 240 ; then this value of v substituted in the general

formula for x above deduced, gives .r = 2781 feet, a httle

before the motion becomes uniform, or when the velocity

has arrived at 240, its maximum being 246.

In like manner is the space to be computed that will be

due to any other velocity less than the greatest or terminal

velocity. On the contrary, to find the velocity due to any

proposed space .r, from the formula .r = — x h. 1. _ ^
^,

Here .r is given, to find v. First then —— =: h.l. : iO •» WW — cv^

take therefore the num.ber to the hyp. log. of -^, which

number call n ; then n = ,
; conseq. aw — ncv' =: W,

and NW ^10 = ncd% and v = s/ w, a general theorem

for the value of v due to any distance x. Suppose, for in-

stance, x is 1000. Now 4^ being — 64, w = 1*05, and'

€ = -00001725; theref. -^^ = r0514, and the natural

nupaber belonging to this, considered as an hyp. log. is

N- 1

2-8617 = N ; hence then v = */ w = 19y, is the velo-

city due to the space 1000, or when the ball has descended

1000 feet.

Again, for the time t of descent : here /=-—•, but

^ = r- X
'—;, as found above, theref. i = -— x »

'i^ w — cv' xg w ~ cv"

K

1 ro
V-J-+ V

the fluent of which is — ^/~ X h. 1. — > the general

V V
c

value of the time t for any value of the velocity v ; which

value of/ evidently increases as the denominator y/ v

decreases, or as the velocity v increases ; and consequently

the time is infinite when that denominator vanishes, which

is when v ~\/—, or cv^ = zc, the resistance equal to the

ball's weight, being the same case as when the space x be-

comes infinite, as above remarked. But, like as was done
for
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for the distance .r as above, we may here also find the value

c£ i corresponding to any value of Vy less than its maximum
246, and consequently to any value of j:', as when v is 24-0

for instance, or x=: 2781, as determined above. Now, by
substituting 240 for r, in the general formula

. w

* — -j-\/— X h. 1. -, It bnngs out / = 16"'j75 : so

that it would be nearly 16/ seconds when the velocity arrives

at 240, or a little less than the maximum or uniform degree,

viz, 24G, or when the space descended is '2781 feet.

Also, to determine the time corresponding to the same,
when the descent is 1000 feet, or the velocity 199 : find the

1 r \ w 1 / 1-05 246 1'23 _,
value of -—

-v/— = —v/ — — = -:;—. Then
. w

a/ + V
<- 246 + 199 445 , , , r i

• , • „ ^,_«
rz —-:—-- = -—-; the hyp, log. of which is 2-24<79.

/ w '240 — 1 99 47 ' ^ ^ "

c

Hence 2-2479 x ^^ = ^"'6\y the time of descending 1000

feet, or when the velocity is 1 99.

See other speculations on this problem, in the 2d volume,

pjob. 22, as determined from theory, viz, without using the

experimented resistance of the air.

PROBLEM X.

To determine the Circumstances of the Motion of a hall
projected Horizontally in the Air; abstractedfrom its Fer-^

tical Descent by its Gravitation.

Putting d for the diameter, and w the weight of the ball,

V the velocity of projection, and -j the velocity of the ball

after having moved through the space x. Then, bycorol. 1

to prob. 2, if the velocity is considerable, such as usual in

practice, the resistance of the ball, moving with the velocity

v^ is {mv^ — nv)d'-y and therefore d^ is the retardive

force^; hence the common formula vv = 2^x, is — vv =

52.V X d\ and theref. .v — -—
• x = -r-T-r X

mv - n
~ Tup7i ^ T" » ^^^ Auent of which is obviously

V
VI

-!t— X — hyp. loff. of V -, and bv the correction by tlie

first
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first velocity v, it becomes x = -—— x h. W. , the

V — —m
general formula for the distance passed over in terms of the

velocity.

Now, for an application, let it be required first, to deter-

mine in what space a 24 lb ball will have its velocity reduced

from 1780 feet to 1500, that is, losing 280 feet of its first

velocity. Here, d = 5-6, a; = 24, v = 1 780, and v = 1500;

also -=150. Hence --^,=: 3587-4, then x = 3587-4 x

h. 1. -—= 3.>8/ -4 X h.l.._,= 3587-4 X h. 1
~

c - 150 1350 135

676 feet, the space passed over when the ball has lost 280
feet of its motion.

Again, to find with what velocity the same ball will move,

after having described 1000 feet in its flight. The above

theorem is r or 1000 = 3587-4 x h. 1.

""

" Yl = 3587-4 x
u — 150

, , 1630 10000 , , 1630 , , i. ^ .L
h. 1- TTT.* or —r—; =p h. 1. r— ; butthenumber to the

V — 150* 3587.i V — 150'

10000 . „ ^ ,
1630 ,

hyp. log. ^7^ is 1-7416 = K suppose; then N =
:;;z~i50*

^^^

nv - 150n = 1630, or nv = 1630 + 150n, and v = -— +N

150 = 936 + 150 == 1036, the velocity when the ball has

moved 1000 feet.

Next, to find a theor. for the time of describing any space,

or destroying any velocity : Here t as — ;= rr—— X 1

the fluent of which, by the 9th form, is / = -r^rm X — x

h. 1. = -r—r- X h. 1. , and by correction

TO m

32«<i» ^ n n ' S2nd* ^^ °

m tn

^ _ I3Q
• ~i putting v for the first velocity, and 1 50 for —

its value, as before.

Now, to take for an example the same 24lb ball, and its

projected velocity 1780, as before ; let it be required to find

in what time this velocity will be reduced to 786. Here then

V = 1780, i; = 786, w = 24, </ = 5-6, r/" =31 -.36, 7i= -001;

hence
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, w 750 ^„«.^ jV-150 « 1630
hence r--r = -^-t~, = 23*916 ; and -— . - = -—t- x

3'inrf* 31-30 ' V— 150 V 636
786 21353

778(7" Tm6H'
thehyp.log. ofwhich is -1099; then 23-916 X

•1099 zz 2' -628, the time required.

For another example, let it be required to find when the

Telocity will be reduced to 1000, or 780 destroyed. Here
V = 1 000, and all the other quantities as before. Then
T-150 ^ -v 1630 1000 1630 , , , r i.- i. • '-— X — = . X —- = 77—,* the hyp. log-, or which isV— 150 V 850 1780 1513* -'

*^ o

•07449; theref. 23-916 X -07449 = l"-78, is the time sought-

On the other hand, if it be required to find what will be
the velocity after the ball has been in motion during any given

time, as suppose 2 seconds, we must reverse the calculation

thus :t=:2" being = -^. X h. 1. ^^^^ . - = 23-916 x

h. I. —^^--- .— ; theref. -—— = -083626 is the hyp. log. of
V — 150 V '

'id 916 ''* °
V - 150 V , , . t • 1 • M
^ _ . — , the number answering to which is r08 /2d =: n

L • V — 150 V TT . ,^
suppose, that is, n = -rr.— . Hence nvz; — 150nv =^'^ ' ' V — 150 V

1,-rv J 150NV 290290 „^, ,
V,, - 150^, and v = ^^^^-——-- ^^^:^= 951,thevelo-

city at the end of 2 seconds.

The foregoing calculations serve only for the higher velo-

cities, such as exceed 200 or 300 feet per second of time.

But, for those that are below 300, the rule is simpler, as the

resistance is then, by cor. 2 prob. 2, -00000447^^x;^ = cd'^v^,

where d denotes the diameter of any ball. Hence then,

employing the same notation as before, =y, and — vv -zz

32fx = 32* X -—-; theref. x — —-jj- x , the correct

fluent of which is x = -—-— x h. 1. —

.

Now, for an example, suppose the first velocity to be
300 = V, and the last v =. 100, for a 24 lb ball. Then
a; = 24, d — 5-6j d- — 31-36, c — -00000447; therefore

j^TTjr = -rrrTT- = 5350; and — = —- rr 3, the hyp. log.
32ca* 12j*44c v 100 ' J r b

of which is r0986 ; theref. 1-0986 x 5350 = 5878 =: x, is

the distance.—If the first velocity be only 200 — v ; then

— = 2, the hyp. log. of which is "693 1 5, therefore -69315 x

5350 =: 3708 = .r, the distance.

And
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And conversely, to find what velocity will remain after

passing over any space, as 40D0 feet, the first velocity being

^ TT 11 1 r y ' * 4000 ' 400
V = 300. Here the hyp. log. of— is r;-- — -—— =: ——•

J ir a
.J i,j5,0 53jO 53a

or)

— —- — -74766, the natural number of which is 2-1120,

V V 200
that is, 2-112 = --; therefore t;=

-jYTi- Tm"^"^""'^^*^
velocity.

Again, for the time t: since x = -i-_ x -^1^ , therefore

t :r: -f-= "' . X UlL, the correct fluent of which is

U'..l In, M V —U^ ,

t ~ -——t X ( )
—-—-— X .—So, for example,

V — c 200 2 ,

if V = 300, and ^> rz 100 j then—- =:
-^3;^^

_- -^ ; then

—^ or 5350 X -^^~ "=- ob"\ = t. the time of reducirg the

SOO velocity to 100, or of passing over the space 5878 feet.

And, reversing, to find the velocity r, answering to any,

given time t: Since t = „, . X (— — ) =: 5350 x
3ZccC V V

/ ), theref. v =r:r. . Here, it t be given = 30 ,

r,3.wv r>.'?.5 3'.' 100
•nd V = 300 ; then v = j^^^, = ,-^^3

X 300 = -^ =
112, the velocity sought.

CoroL The same form of theorem, x = ——- X h. 1. —

,

as above is brought out for small velocities, will also serve

for the higher ones, if we employ the medium resistance be-

tween the two proposed velocities, as was done in prob. 5.

Thus, as in the first example of this problem, where the twa
velocities are ITSU and 1500, the resistance due to the velo-

city noO, in the first table of resistances, being 74* 13, say as

l"*bo^ : 1780- : : 74-J3 : HI 21, the resistance due to the ve-

Jocity 17*^0; then the mean between 81 -.T and 57 25, due
to 1500 velocity, is 69 26, or rather take 691. Again, as

V651 : a/ 694: : : ^^00 : 1646, the velocity due to the me-
dium resistance 69^. Hence, as in prob. 5, as 1646" : v"^ : :.

69f : 0000'i5G.'';v* = suppose av\ the resistance due to any
velocty ?y, between 1780 and 1.:jOO, for the 1*05 lb bail. And,
as l-9(.5* : 5-6^

: : ov'' : 8-l24rtr^ = •OOU20838r- = hv'- sup-

pose, the resistance due to the same velocity with the 24 lb.

tiall. Thwrefore ~ =/, and - v'v =: S2fx = ^hv'k, and
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> = Zil, the correct fluent of which Is —- X h. 1. — = —

•

X h. 1. J^= ^ X h. 1. -IJ^ = 3600 X -171 148 = 616 the

Telocity sought.

PROBLEM XI.

To detLTmine the 'Ranges of Projectiles in the Air.

To determine, by theorv, the trajectory a projectile de-
scribes in tlie air, is one of the n-iOst difficult problems in the
whole com-sc of dynamics, even when assisted by all the ex-
periments that have hitherto been made on this branch of
physics; and is inceed much too difficult for this place, in

the full extent of the problem : the consideration of it must
therelore be rese. ved for another occasion, when the nature
of th? air's resistance can be more amply discussed. Even
the solutions of Newton, of Bernoulli, of Euler, of Borda,
&c. &c, after the most elaborate investigations, assisted by all

the resources of the modern analysis, amount to no more
than distant appioxi. nations, that are rendered nearly useless,

even to the speculative philosopher, from the assumption of
jl very erroneous law of resistance in the air, and much more
so to the practical artillerist, both on that account, and from
the very intricate process of calculation, which is quite inap-

plicable to actual service. The solution of this problem re-

quires, as an i.^dispensable datum, the perfect determination
by experiment of the nature and laws of the air's resistance

at different altitudes, to balls of different sizes and densities,

moving with all the usual degrees of celerity. Unfortunately
however, hardly any experiments of this kind have been
made, excepting those which on some occasions have been
published by myself, as in my Tracts of 1786, as well as in

my Dictionary, some few of which are also given in the 2d
vol, of this course, art. 105, with some practical inferences.

And though I have many more yet to publish, of the same-
kind, much more extensive and varied, I cannot yet under-
take to pronounce that they are fully adequate to the pur-t

pose in hand.

All that can be here done then, in the sohition of the
present problem, besides what is delivered in the '2d volume,
is to collect together some of the best practical rules, founded
partly on theory, and partly on practice. 1 . In the first place
then, it may be remarked, that the initial or iirst velocity of
a ball may be directly computed by prob. 17, near the end
of our 2d volume ; having given the dimensions of the piece,

the-
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the weight of the ball, ani' Jic charge of powder. Or other-

wise, the same may be made out from the able of experi-

mented ranges and velocities in pa. iCl of that volume, by
this rule, that the velocities to different balls, and different

charges of powder, are as the square roots of the weights of
the powder directly, and as the square roots of the w-^ights

of the balls inversely. Thus, if it be enqijred, with what
velocity a 24 lb ball will be discharged by 8 lb of powder.
Now it appears in the table, that 8 ounces of powder discharge

the 1 lb ball with 1640 feet velocity; and because 8 lb are =
128 ounces; therefore by the rule, as v/f • V 'sV • • l^'l-O :

1640 v/tI = 1640 ^/| = 1339, the velocity sought. Or
otherwise, by rule 1 p. 162 of the 2d vol. as ^/24 : ^/ 16 : :

1600 : 1306, the same velocity nearly. But when the charges

bear the same ratio to one another as the weight of the balls,

that is when the pieces are said to be alike charged, then the

velocities will be equal. Thus, the 1 lb ball by the 2 oz charge,

being the 8th part of the weight, and the 24 lb ball, with 3 lb

of powdei-, its 8th part also, will have the same velocity, viz,

8G0 feet. In like manner, the 1230 tabular velocity, an-

swering to 4oz of powder, the 4th part of the ball, will

equally belong to the 24 lb ball with 6 lb of powder, being its

4th part, and the tabular velocity 164u, answering to the

8 oz charge, which is -^ the weight of ball, will equally be-

long to the 24 lb ball with 12 lb of powder, being also the ^
of its weight.

2. By prob. 9 will be found what is called the terminal

Telocityi that is, the greatest velocity a ball can acquire by
descending in the air ; indeed a table is there given of the

several terminal velocities belonging to the different balls,

with the heights, in an annexed column, due to those veloci-

ties in vacuo, that is the heights from which a body must fall

in vacuo, to acquire those velocities.

3. Given the initial velocity, to find the elevation of the

piece to have the greatest range, and the extent of that range.

These will be found by means of the annexed table, ahered

from
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irom Professor Robison's,

in the Encyclopedia Bri-

tannica, and founded on
an approximation of Sir I.

Newton's. The numbers
in the first column, multi-

plied by the terminal velo-

city of the ball, give the

initial velocity; and the

numbers in the last co-

lumn, being multiplied by
the height, give the great-

est ranges; the middle co-

lumn showing the eleva-

tions to produce those

ranges.

To use this table then,

divide the given initial ve-

locity by the terminal ve-

locity peculiar to the ball,

found in the table in prob.

9, and look for the quo-
tient in the first column
here annexed. Against

this, in the 2d column will

be found the elevation to

give the greatest range ; and the number in the 3d column
multiplied by fl, the altitude due to the terminal velocity,

also found in the table in problem 9, will give the range,

nearly.

Ex. 1 . Let it be required to find the greatest range of a
24 lb ball, when discharged with 1640 feet velocity, and the

corresponding angle to produce that range. By the table in

prob. 9, the terminal velocity of the 24lb ball is 415, and its

producing altitude 2691 : hence —— ~ 3*95, nearly equal to

3 '98 65 in the 1st column of our table, to which corresponds

the angle 34° 15', being the elevation to produce the greatest

range; and the corresponding number 29094, in the 3d
column, multiplied by 2691, gives 7829 feet, for the greatest

range, being nearly a mile and a half.

Eram. 2. In like manner, the same ball discharged with

the velocity 860 feet, will have for its greatest range 3891
feet, or nearly |- of a mile, and the elevation producing it

39" 55'.

These examples, and indeed the whole table in the 9th

problem

Table of Elevations giving llit

Greatest Range.
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problem, are only adapted to the me of cannon balls. But
it is not usual, and indeed not easily practicable, to discharge

cannon shot at such elevations, in the Britjfeh service, that

practice being the peculiar office of mortar shells. On this

account then it will be necessary to make out a table of ter-

minal velocities, and altitudes due to them, for the different

sizes of such shells. The several kinds of these in pre-ent

\ise, are denominated from the diameters of their mortar
bores in inches, being the five following, viz, the 4*6, the
6'8, the 8, the 10, and the 13 inch mortars, as in the first

column of the following table. But the outer diameters of

,the shells are somewhat smaller, to leave a little room or

space as windage, as contained in the 2d column.

Tabic of dimensions^ iSt\
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iKe diameter of the shell being d ; that is, the terminal velo-

cities will be all less in the ratio of 147 '3 to 175-5. Now,
computing these several velocities by this rule, to all the dif-

ferent diameters, they are found as placed in the 6th col.;

and in the 7th or last column are set the altitudes which
Vould produce these velocities in vacuo, as computed from

this theorem ---.
64

Having now obtained these terminal velocities, and their

producing altitudes, for the shells, we can, from them and
the former table of ranges and elevations, easily compute the

greatest range, and the corresponding angle of elevation, for

any mortar and shell, in the same way as was done for the

balls in this problem. Thus, for example, to find the great-

est range and elevation, for the 13 inch shell, when projected

with the velocity of 2000 feet per second, being nearly the

greatest velocity that balls can be discharged with. Now,

by the method before used, -r—• = 3*796 ; opposite to this,

found in the first column of the table of ranges, corresponds
34^ 49' for the elevation in the 2d coluinn, and the number
2*764 in the 3d column ; this multiplied by the altitude 4340,
gives 11995 feet, or more than 2i miles, for the greatest

range.

This however is much short of the distance v/hich it is said

the French have lately thrown some shells at the siege of

Cadiz, viz, 3 miles, which it seeins has been effected by
menus of a peculiar piece of ordnance, and by loading or fill-

ing the cavity of the shell v/ith lead, to render it heavier, and
thus make it fitter to overcome the resistance of the air. Let
us then examine what will be the greatest range of our [H

inch shell, if its usual cavity be quite filled with lead when
discharged, with the projectile velocity of 2000 feet.

Now the diameter of the cavity, being about -j-V of that of

the mortar 13, will be nearly 9 inches. And the weight of

a globe of lead of this diameter is l30"3ib; which added to

187'8,the weight of the shell empty, gives 3271b, the whole
weight of the shell when the cavity is filled with lead, v.diich

was found "^SG when supposed all of solid iron, their ratio or

quotient is •8733. Then, as before, the theorem will ba

11^5^/—— = 187*3 v/f/ for the terminal velocity; which,

when d = 12'S, becomes 670 for the terminal velocity;

therefore its producing altitude is — -- = 7014. Then, hj

the same method as before, -^ = 2-985 ; which number.

found
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found in the first column of the table of ranges, the opposite

number in the 2d col. is 37*' 15' for the elevation of the piece,

and in the 3d column 2'] 4, multiplied by 1014, gives 15010
feet, or nearly 3 miles. So that our 1 3 inch shells, discharged

at an elevation of about 37^ degrees, vsrould range nearly the
distance mentioned by the French, when filled with lead, if

they can be projected with so much as 2000 feet velocity, or

upwards. This however it is thought cannot possibly be
effected by our mortars ; and that it is therefore probable the

French, to give such a velocity to those shells, must have
contrived some new kind of large cannon on the occasion.

4. Having shown in the preceding articles and problemS5

how, from our theory of the air's resistance, can be found,

first the initial or projectile velocity of shot and shells ; 2dly,

the terminal velocity, or the greatest velocity a ball can ac-

quire by descending by its own weight in the air ; 3dly, the

height a ball will ascend to in the air, being projected verti-

cally with a given velocity, also the time of that ascent; 4thl7,

the greatest horizontal ranges of given shot, projected with a

given velocity; as also the particular angle of elevation of
the piece, to produce that greatest range. It remains then
now to enquire, what laws and regulations can be given re-

specting the ranges, and times of flight, of projects made at

other angles of elevation.

Relating to this enquiry, the Encyclopaedia Britannica

mentions the two following rules : 1st. " Balls of equal den-
sity, projected with the same elevation, and with velocities

which are as the square roots of their diameters, will describe

similar curves. This is evident, because, in this case, the

resistance will be in the ratio of their quantities of motion ;

therefore all the homologous lines of the motion will be in

the proportion of the diameters." But though this may be
nearly correct, yet It can hardly ever be of any use in prac-

tice, since it is usual and proper to project small balls, not

with a less, but with a greater velocity, than the larger ones.

2dly, the other rule is, " If the initial velocities of balls, pro-

jected with the same elevation, be In the inverse subduplicate

ratio of the whole resistances, the ranges, and all the homo'
logous lines in their track, will be inversely as those resist-

ances." This rule will come to the same thing, as having
the initial velocities in the inverse ratio of the diameters, as

distant perhaps from fitness as the former. Two tables are

next given in the same place, for the comparison of ranges

and projectile velocities, the numbers in which appear to be
much wide of the truth, as depending on very erroneous

effects of the resistance. Most of the accompanying remarks,

however.
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however, are very Ingenious, judicious, and philosophical,

and very justly recommending the making and recording of

good experiments on the ranges and times of flight of pro-

jects, of various sizes, made with different velocities, and at

various angles of elevation.

Besides the above, we find rules laid down by Mr. Robins
and Mr. Simpson, for computing the circumstances relating

to projectiles as affected by the resistance of the air. Those
of the former respectable author, in his ingenious Tracts on
Gunnery, being founded on a quantity which he calls F,

(answering to our letter a in the foregoing pages), I find to be
almost uniformly double ofwhat it ought to be, owing to his

improper measures of the air's resistance ; and therefore the

conclusions derived by means of those rules must needs be

very erroneous. Those of the very ingenious Mr. Simpson,
contained in his Select Exercises, being partly founded on
experiment, may bring out conclusions in some of the cases

not very incorrect ; while some of them, particularly those

relating to the impetus and the time of flight, must be very

wide of the truth. We must therefore refer the student,

for more satisfaction, to our rules and examples before given

in vol. 2 pa. l62 &c, especially for the circumstances of dif-

ferent ranges and elevations, &c, after having determined, as

above, those for the greatest ranges, founded on the real

measure of the resistances.

CHAPTER
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CHAPTER XIV.

rnoMrscuous problems, as exercises in mechanics,
STATICS, DYNAMICS, HYDROSTATICS, HYDRAULICS,
JUlOJEqTILES, &C. &C.

PROBLEM I.

Let AB and kc be two inclined planeny xvJwse common alti'

tilde AD is given = G^feet; and their lengths suchy that a

heavy body is 2 sccoyids of time longer in descending through

AB than through ac, bij theforce ofgravity ; and if tx€o ballSy

the one weighing 3 and the other 'lib, be connected by a thread

and laid on the planes, the thread slidingfreely over the ver-

tex^ A, they will mutually sustain each other. 2uere the

lengths of the two plajies ^

The lengths of planes of the same height being as the

thnes of descent down them (art. 133 vol. 2), and also as the

weights of bodies mutually sustaining each other on them
(art. 122), therefore the times must be as the weights ; hence

as 1, the difference of the weights, is to 2 sec. the diff. of

times, : : > '^ '

.

'

li the times of descending down the two
* (2:4' sec. > °

planes. And as -v/lG : 'v/G4 : : I sec. : 2 sec. the time of de-

scent down the perpendicular height (art. 70). Then, by the
r

(3 ggc • 19*^ )
laws of descents (art. 13C!), as2 sec. : 64 feet:: l^ '

\ ^o'^l

feet, the lengths of the planes.

Note. In this solution we have considered 1 6 feet as the

space freely descended by bodies in the 1st second of time,

and 32 feet as the velocity acquired in that time, omitting

the fractions -^ and i, to render the numeral calculations

simpler, as was done in the preceding chapter on projec.iles,

and as we shall do also in sohing the following questions,

wherever such numbers occur.

Another Solution bjj means of Algebra.

Put X = the time of descent down the less plane j then
will X + 2 be that of the greater, by the cpestion. Now
the weights being as the lengths of the planes, and these

again as the times, therefore as ii : 3 ; : .r : x -}- 2 j hence
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2x -\~ 4i
~ 3.r, and .r n I. sec. Then the lengths of the

planes are found as in the last proportion of the former

solution.

PROBLEM 2.

If an elastic ballfall from the height of 50feet above the

plane of the horizon, and impinge on the hard surface ofa
plane inclined to it in an angle of 1 5 degrees ; it is required to

find zvhat part of the plane it must strike, so that after re-

fection, it may fall on the horizontal plane, at the greatest

distance possible beyond the bottom of the inclined plane ?

Here it is manifest that

the ball must strike the ob-

lique plane continued on a

point somewhere below the

horizontal plane; for other-

wise there could he no maxi-
mum. Therefore let bc be \ ^t

the inclined plane, cdg the horizontal one, B the point on
which the ball impinges after idling from the point A, begi
the parabolic path, e its vertex, bh a tangent at B, being

the direction in which the ball is reflected ; and the other

lines as are evident in the figure. Now, by the laws of re-

flection, the angle of incidence ABC, is equal to the angle of

reflection hbm, and therefore this latter, as well as the former,

is equal to the complement of the /L c the inclination of the

two planes ; but the part IBM Is r= /. c, therefore the angle

of projection HBi is ~ the comp. of double the A c, and
being the comp. of hbk, theref. Z. hbk = 2 Z. c. Now, put

a — 50 = AD the height above the horizontal line, t = tang.

Z. DEC or 75° the complement of the plane's inclination, r =
tang. HBI or Z. H = 60° the comp. of 2 Z. c, .s= sine of 2Z. hbj
rr 1L'0° the double elevation, or — sine of 4 Z. C; also .r=AB
the impetus or height fallen through. Then,

Bi = 4KH = 2s.r, by the projectiles prop. 21,

and <
,

-
\( or trigonometry.

lCD=: t X BD= i{.V — a) ^ ^ ^ '

also, KD — EK — BD — ~sr.v - .V 1- a, and ke = \bi = «.r

;

then, by the parabola, \/bk : -/dk : : KE : fg r= ke x

*/— = v/ — Vi— ax - (
s^).r^] =:

£by/{ax — h':r-), putting b r= sine of 2Zc ~ sine of 30°.

Hence cg :^cd + df± fg = tx— ta + sx±i 'lb'/(^ax — b'x'^)

a maximum, the fluxion of which made rr 0, and the equa-

tion reduced, gives x zz -^ x (I ± V" , ,
'., where Ji=:s

. Vol. III. X + t*
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+ /, and the double sign ± answers to the two roots or va-
lues of J, or to the two points G, G, where the parabolic path,

cuts the hon::ontal line CG, the one in ascending and the other
in descending.

Now, in the present case, when the Z. c =: 15", / = tang.
15' — 2-fv'3, 7 = tan. 60 = \/3y s — sin. 60" =z ^^3, If

—
sin. 30*= i,7i = s + t = 2+ i^3i then 5^=2^=100, and

n-r:;iE?
= irr^-—5^-5 theref.^- -X(l±v';;rr^,)

= 100 X (1 ± ^^/lil|^^) = 100 X (1 ± •y9414) = 199-414.

or -586 ; but the former must be taken. Hence the body
must strike the inclined plane at 149'414 feet below the ho-
rizontal line ; and its path after reflection will cut the said

line in two points ; or it will touch it when x = ^. Hence

also the greatest distance CG required is 826-9915 feet.

Corol. If it were required to find co or tx — ia -\- sx ±z

2b^/[ax — b-x^) = ^" a given quantity, this equation would
give the value of ^ by solving a quadratic.

PROBLEM 3.

Suppose a ship to sailfrom the Orkney Islands, in latitude

59° 3' north, on a n. n. e. course, at the rate of 10 yniles an
hour; it is required to determine how long it will be before-
she arrives at the pole, the distance she will have sailed, and
the difference ojlongitude she will have made "when she arrives

there ?

Let AEC represent part of the equator ;

T the pole ; Amrv a loxodromic or rhumb
line, or the path ofthe ship continued to tlie

equator j pb, pc, any two meridians indefi-

nitely near each other ; nr, or ynt, the part

of a parallel of latitude intercepted between
them.

Put c foT the cosine,, and t for the tangent

of the course, or angle 7tmr to the radius r;

Arji, any variable part of the rhumb from the equator, = f j

the latitude Bni = w -, its sine x, and cosine 3/; and AB, the
dif. of longitude from A, = z. Then, since the elementary
trinrigle mnr may be considered as a right-angled plane tri-

angle, it is, as rad. r : c — sin. Z. 7nrn : : 'Ozz mr : w r: mn

.: : V : w; theref. cv zz. rw, or v — - ^n —, by putting s

for the secant of the Z. 7imr the ship's course. In like man-
nei^
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hQV) ifw be any other latitude, and v Its corresponding length.

rw W — tif

of the rhumb ; then v z= — ; and hence y — v — r x »

bv D — — , by putting Drrv— r the distance, and d—w—W
the dif. of latitude ; ivhich is the common rule.

The same is evident without fluxions : for since the ^ mm
is the same in whatever point of the path Amrp the point m
is taken, each indefinitely small particle of Aw?'P, must be to

the corresponding indefinitely small part of Bw, in the con-

stant ratio of radius to the cosine of the course ; and there-

fore the whole lines, or any corresponding parts of them, must
be in the same ratio also, as above determined. In the same
manner it is proved that radius : sine of the course : : dis-

tance : the departure-

Again, as radius r : t = tang, vm?^ : : I'v = nm : 7ir or 7ntf

and as r :i/ : : pb : pm : : z= bc : uit; hence, as the extremes

oftliese proportions are the same, th-e rectangles of the means
tyv fx

must be equal, viz, Tjk =. t^v = — because -xi; = — by the

tvx Xtx
property of the circle ; theref. 2; = ~ = TZTti ^^^ general

fluents of these are z = t x hyp. log. V^— 1- c ; which

corrected by supposing ;: = when x:=.af are r = ? X (hyp,

^og- v/^-3^ - IiyP- log- V^-H) ; but r X (hyp. log. V'-^~^

— hyp. log. V-3- ) is the meridional parts of the dif. of the

latitudes whose sines are x and «, which call b ; then is

% zz —, the same as it is by Mercator's sailing.

Further, putting 7Ji= 2*7 182S the number whose hyp. log.

is 1, and n = —-
^ then, when z begins at a, m" = ^^, and

theref x = r x ^-^^^ = r - ^;^;—^ : hence it appears that

as m"y or rather n or z increases (since m is constant), that x

approximates to an equality with r, because decreases

or converges to 0, which is Its limit ; consequently r is the
limit or ultimate value of .r : but when x — /-, the ship will

be at the pole ; theref. the pole must be the limit, or eva-
nescent state, of the rhumb or course : so that the ship may
be said to arrive at the pole after making an infinite number

of revolutions round it ; for the above expression
2;:

m" + 1

nishes when n, and consequently z, is infinite, in which case
jr is = r.

X 2 Now,
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Now, from the equation d = — = — , it is found, that,

when d = 30° 57' the comp. of the given lat. 59° 3', and c =
sine of 67® 30' the comp. of the course, D will be = 20 10
geographical miles, the required ultimate distance ; which,
at the rate of 10 miles an hour, will be passed over in 201
hours or 8|- days. The dif. of long, is shown above to be
infinite. When the ship has made one revolution, she will

be but about a yard from the pole, considering her as a point-

When the ship has arrived infinitely near the pole, she will

go round in the manner of a top, with an infinite velocity ;

v/hich at once accounts for this paradox, viz, that though she

make an infinite number of revolutions round the pole, yet

her distance run will have an ultimate and definite value, as

above determined : for it is evident that however great the

number of revolutions of a top may be, the space passed over

by its pivot or bottom point, while it continues on or nearly

on the sam.e point, must be infinitely small, or less than a

certain assignable quantity.

PROBLEM 4.

^4 current of water is discharged by three equal openings

or sluices, in the folloxving shapes : thefirst a rectangle ^ ihs

second a semicircle, and the third a parabolay having their

altitudes equal, and their bases in the same horizontal line^

and the xvater level with the tops of the arches : on this sup-

position it is required to show what may be the proportion of

the quantities discharged hy these sluices.

Let VB be half the parallelogram, avc
half the semicircle, and avd halfthe pa-

rabola, that is, the halves ofthe respective

sluices or gates. Put fl=AV the common
altitude, and c n '7854 : then is ca~ the

area of each of the figures; also ca= k'By
''J- —B^Cf^

a = AC, and ~ca = ad ; also put ;r = vp
any variable depth, and xzzvp. Then, the water discharged,

at any depth x, being as the velocity and aperture, and the

velocity being in all the figures as \/x, therefore x^x X pq,

and x.^x x PR, and x>^^x x PS, or cax-x, and xx^i^a — x)^

and l^y/f/ x.r^-, are proportional to the fluxions of the quan-
tity of water discharged ; by the said figures or sluices re-

spectively ; the correct fluents of which, when x =r a, are

^ca'^, and tV^SVS - 7), and im^, the 2d fluent being

found by art. 12 pa. 225 of this vol. Hence the quantities

of
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-of water discharged by the rectangle, the semich-cle, and the

parabola, are respectively as jf, and ^^(S v'2 — 7), and ^f, or

as l,and~(8-y/2 — 7), and ^, or as 1, and r09847, and l-J-.

PROBLEM 5.

The initial telocity ofa 2i'ib ball ofcast iroji^ which is pro-

jected in a direction perpendicular to the hoizon, being sup-

posed \ '200 feet per second; and that the renslance of the

medium is constantly as the square of tlie velocity^ and cverij-

•where of the same density : required the time offlighty and
ihe height to which it will ascend.

Answer^, By problems 5 and 6, of the last chapter, the

ascent will be found :z: 5337 feet, and the lime of tiie ascent

28 seconds.

PROBLEM 6.

To determine the same as in ihe last question, supposing

ihe density of the atmosphere to dea ease in ascending ajier ihe

usual way f

ylns. By probs. 7 and S, the height will be 5614 feetj

and the time 34 seconds.

PROBLEM 7.

It is required to find the diameter of a circular parachute^

by means of which a man of ISOlb weight may descend on the

earth, from a balloon at a height in the air, wit/i the ve^

locity of only 10 feet in a second of time, being the velocity

acquired by a hodyfreely descending through a space ofonly
Ifoot 6^ inches, or of a manjumping downfrom a height of
18|- inches: the paracliuie being made of such, materials and
thickness, that a circle of it of 50 feet diameter, weighs only

ISOlb, and so in proportion more or less according to ihe area

of the circle.

If a falling body descend with a uniform velocity, it must
necessarily meet with a resistance, from the medium it de-
scends in, equal to the whole weight that descends. Let x
denote the diameter of the parachute, and a zz -78.54

; then
ax^ will be its area, and as 50* : .r^ : : 150 : -^-^x^ the weight
of the same, to which adding 150lb, the man's weight, the
sum -/or^-f 1 50 will be the whole descending weight. Again,
in the table of resistances at pa. S75 near the end of vol. 2,

we find that a cii-cle of ~ of a- square foot area, moving with
10 feet velocity, meets with a resistance of "57 ounces ~
•04751b ; and the resistances, with the same velocity, being
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^s the surfaces, therefore as ~ : •04'75 : : aj- : 2\?jl5(fx'- ^
'leiSSx^ the resistance of the air to the parachute, to which
the descending weight must be equal ; that is, "IGTSS-r- =
'^\x' + 15r,', hence • 10788^'- = 150, or x"- = i;i905, and
^ence x = 37j feet, the diameter of the parachute required.

PROBLEM S.

To determine the effects of Pile-Engines.

The form of the pile-engine, as used by the ancients, is not

known. Many have been invented and described by the

moderns. Among all these, that appears to be the best which
was invented by Vauloue, as described by Dejaguliers, and
was used at piling the foundations at building AVestminster

Bridge. Its chief properties are, that the ram or weiijht be
raised with the least expence of force, or with the fewest

men ; that it fall freely from its greatest height ; and that,

ha\4ng fallen, it is presently laid hold of by the forceps, and
so raised up to its height ?galn. By which means, in the

shortest time, and with the fewest men, or the least force, the

most piles can be driven to the greatest depth.

Belidor has given some theory as to the effect of the pile-

engine, but it appears to be founded on an erroneous prin-

ciple : he deduces it from the laws of the collision of bodies.

But who does not pei-ceive that the rules of collision suppose

a free motion and a non-resisting medium ? ' It cannot there-

fore be applied in the present case, where a very great re-

sistance i"! opposed to the pile by the ground. We shall

therefore here endeavour to explain another theory of this

machine.

Since the percussion of the weight acts on the pile during

the whole time the pile is penetrating and sinking in the

earth, by each blow of the ram, during which time its whole

force is spent ; it is m.anifcst that the effect of the blow is of

that nature, which requires the force of the blow to be esti-

mated by the square of the velocity. But the square of the

velocity acquired by the fall of the ram, is as the height it

falls from j therefore the force of any blow will be as the

height fallen through. But it is also more or less in propor-

tion to the weight of the ram ; consequently the effect or

force of each blow must be directly in the compound ratio of

both, viz, as a'j^ where w denotes the weight, and a the alti-

tude it falls from-, or it will be simply as the altitude f/, when
the weight w is constant.

Again, the force of the blov/ is opposed by the mass of the

pile, and by the consistence of the earth penetrated by the

point
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point of the pile, and also by the frktion of the earth against

the surface or sides of the pile that have penetrated below the

surface. Consequently the effect of the blow, or the depth
penetrated by the pile, will be inversely in the compoujid
ratio of these three, viz, inversely as m//j where in denotes

the mass of the pile, i the tenacity or cohesion of the earth,

andy the friction of the surface penetrated in the earth. But,

in the sarne soil and with the same pile, vi and t are both

constant, in which case the depth of penetration will be in-

versely only as
y" the friction. On all accounts then the pe-

netration will be as —,, or simply as --r only, for the same
mif ^ ' f ^

weight and pile and soiL

To determine the depth sunk by the pile at each stroke of the

ram.

After a few strokes, so as to give the pile a little hold in

the ground, to make it stand firmly, the blows of the ram
may be considered as commencing, and causing the pile to

sink a little at every stroke, by which small successive sink-

ings of the pile, the space the ram falls through will be suc-

cessively increased by these small accessions, and the force of

the successive blows proportionally increased. But these, on
the other hand, are resisted and opposed by the friction of
the part of the pile which has been sunk before, and which
also sinks at each stroke ; and as the quantities of these rub-

bing surfaces increase in a greater ratio to each other, than
the heights fallen through, that is, the resisting forces in-

creasing faster than the impelling forces, It is manifest that

the depths successively sunk by the blows must gradually

decrease by little and little every time ; which is also found
to be quite conformable to experience. Thus then the suc-

cessive sinkings will proceed gradually diminishing, till they

become so small as to be almost imperceptible.

Now it was found above that -r is as the penetration by

any blow of the ram, by the same pile in the same soil, that is,

as the height fallen directly, and as the resistance or fi'ictlon

in the earth inversely. Let A denote any other and greater

height, by an after stroke, and f its friction; also P the pene-
tration by the former blow, and p that by the latter, which
must be the smaller : then, by the foregoing principle,

— :—-:: p : JO J hence a : A : :/p : f/7, which is a general

theorem.

Biii
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But now, with respect to the quantity of friction from any

blow, though it be not known from experiment that the fric-

tion is exactly proportional to the rubbing surface, there is

oreat reason to believe that it must be at least very nearly

so : there is also equal reason to conclude that the effect

or irei-isttmce from that rubbing surface must be nearly or

exactly as the length of space it moves over, that is by the

penetration of the pile by any blow. No\r, if d denote the

depth of the pile in the ground before any new blow is struck

by the ram, and b the depth or penetration produced by the

blow, then the length of the rubbing surface will be ^ + -1-6 j

for, the length of the rubbing surface is only d at the begin-

ning of the motion, and it is d + b at the end of it, the me-

dium of the two, or d -f |/!', is therefore the due length of

the surface, and the space or depth it moves over is b\ there-

fore the whole resistance from the friction is (f/ A- ib)b. If

D then denote any other depth of the pile in the earth, and

b' the next penetration, ^hen (d -}- ib')b' will be its friction.

Substituting now b for P, and b' for p, also d + \b for^, and

D ^- i-6' for F, in the general theorem « : A : \Jv : F/?, it be-

comes a : A : : {d+lb)b : {n-{-l_b')b'y for the general relation

between the heights fallen and the resistance and penetration.

This theorem will very conveniently give the series of ef-

fects, or successive sinkings of the piles, by the blows of th&

ram* Thus, after the pile has been properly fixed, or indeed

driven to any depth in the earth, denoied by d, then to give

a blow, the ram falls from the height a + r/, and thereby

sinks the pile the space b suppose : hence, for the next stroke,

the fall will be a -\- d + b — a m the theorem above, and

D -1- l^b' = d-\-b-{- \;b\ the next penetration or sinking being

b' ; theref. a -\- d : a + d -\- b : : {d -j- ib)b : {d + b-i \b')b\

a proportion which gives the quadratic equa. b'^-\-'i.b'id-\-b)=.

tl±^ X {2d + b)b, the root of which is b' = - {d + b) +

'^lid + bf + --^ X [Id + byj-] = —— X -j^b

nearly, or indeed = -j-^^ nearly, because b is small in com-

parison with a -\- d.

Now, for an example in numbers, suppose a zz 3 feet =
60 inches, ^ = 10, 6=3, that is a ~ 60 the height of the

ram above the top of the pile before this enters the ground;
df = 10, after being fixed in the ground ; and b zz 3 the

sinking by the next blow: then -^^b = -jjx S—2*65:=.b,

the
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PROBLEM .9.

To fletermim howfar a man^ who pushes xvith the force

of lOOlif) canforce a sponge ivfo a piece of ordnance, -uhose

dia)neter is 5 ir.chcs, and lentith 10feet, when the barometer
stands at 30 inches; the vent, or touch-hole^ being stopped,

and the spcyige having no windage, that is, ftiing ^the bore

quite close ^

A column of quicksilver 30 inches high, and 5 in diame-
ter, is 5- X 30 X -ISoi' zr5S9-0.5 inches ; which, at 8*102 oz
each inch, weighs 4712*48 oz or 298'28 lb, which is the pres-

sure of the atmosphere alone, being equal to the elasticity of

the nir in its natural state ; to this adding the 1 00 lb, gives

398"J8 lb, the whole external pressure. Then, as the spaces

which a quantity of air possesses, under different pressures,

are in the reciprocal ratio of those pressures, it will be, as

398-28 : 298*28 : : 10 feet or 120 inches : 90 inches nearly,

the space occupied by the air ; theref. 1 20 — 90= 30 inches,

is the distance sought.

PROBLEM 10.

To assign the Cause of the Deletion oj Military Projectiles.

It having been surmized that, in the practice of artillery,

the deflection of the shot in its flight, to the right or left,

from the line or direction the gun is laid in, chiefly arises

from the motion of the gun during the time the shot is pass-

ing out of the piece ; it is required to determine what space

an 18 pounder will recoil or fly back, while the shot is passing

out of the gun ; supposing its weight to be 4800 lb, that of

the carriage 24001b, the quantity of powder 8 lb, the length

of the cylinder 108 inches, that of the charge 13 inches, and

the diameter of the bore 5* 1 3 inches ; supposing also that the

resistance from the friction between tlie platform and carriage

is equal to 3600 lb ?

It is well known that confined gunpowder, when fired,

immediately changes in a great measure into an elastic air,

which endeavours to expand in all directions. Now, in the

question, the action of this fluid is exerted equally on the

bottom of the bore of the gun and on the ball, during the

passage of the latter through the cylinder ; the two bodies

therefore move in opposite directions, with velocities which
are at all times in the inverse ratio of the quantities of matter

moved. Now let .r be tlie space through which the gun re-

coils*, then, as the charge occupies lf5 inches of the barrel,

and the semidiameter of the h%xxc\ is 2*565, the space moved
througk
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<tlirough by the ball when it quits the piece, is 108 — 13 —
2-565 ~ X ~ y'i-1'35 — X : and as the elastic fluid expands

In both directions, the quantity which advances towards the

muzzle, is to that which retreats from it, as 92*435 — x to .t :

8x J {'2-435 -T ,, , . . r ^,
conseq. —7;— and —

.
X 8 are the quantities 01 the

powder which move, the former with the gun, and the latter

with the ball ; besides these, the weight of ball that moves
forwra-ds being 18lb, and of ihe weights and resistance back-

wards 4800 -f 2400 -f 3600 — lOSOOib, hence the whole
Si-

weights moved in the two directions are 10800 + ^5^^ ^^'^

^ , 92-AS5-X 998298 -f-Sx , 2403-31-ar .

^S + ^::^ ^ S' °^ 92-435 ^^^ -Tm3F-> ""' ^^ "^'^

numerators of these only. But when the time and moving
force are given, or the same, then the spaces are inversely

as the quantities of matter; therefore x : ,92"435 — x : :

2403 -3 1 -8jr: 998298+ 8^', or by composition, .r : 92'435 ::

2403-3 l-8.r: 1000701'31,andby div. ;i- : 1: : 2403'31-8x:
10826, theref. l0S26.rr=2403-31 - 8x, or 10834x= 2403-31,

and hence x 3z -2218 inch =r -^ of an inch nearly, or the re-

coil of the gun is less than a quarter of an inch.

Hence it may be concluded, that so small a recoil, straight

backwards, can have no effect in causing the ball to deviate

from the pointed line of direction : and that it is very pro-

bable we are to seek for the cause of this effect in the ball

striking or rubbing against the sides ofthe bore, in its passage

through it, especially near the exit at the muzzle ; by which
it must happen, that if the ball strike against the right side,

the ball will deviate to the left ; if it strike on the left side,

it must deviate to the right ; if it strike against the under
side, it must throw the ball upwards, and make it to range
farther ; but if it strike against the upper side, it must beat

the ball downwards, and cause a shorter range ; all which
irregularities are found to take place, especially in guns that

have much windage, or which have the balls too small for

the bore.

PROBLEM U.

^ ball 0/ lead of 4: inches diameter, is droppedfrom the

top of a towery of 65 j/ards high, andfalls into a cisternfull

of water at the bottom of the tower, ofiO^ yards deep: it is

required to determine the times offailings both to the surface
and to the bottom of the water.

The fall in air is 195 feet, and in water 60| feet. By the
common rules of descent, as -v/iC : ^/ 196 : : l" : 4;y'195 =

3-4^
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3'49 seconds, the time of descending in air. And as a/ 1 6 •.

V[95 :: 32 : 8'/l95 = 111-71 feet, the velocity at the end
of that time, or with which the ball enters the water.

Again, by prob. 22 of vol. 2, art. 2, the space -f = jr X hyp.

log. of ^^j, or rather -r^ x hyp. log. of -^r^- (the velocity

being decreasing, and tf* greater than a) = ^ x com. log. of

V— » where N = 1 1 325 the density of lead, n = 1000 that

of water, a = , o = —-, e = 111 "71 the velocity
ofi o.is

at entering the water, and v the velocity at any time after-

wards, also d the diameter of the ball = 4 inches, and m =
2-302585 the hyp. log. of 10.

Hence then n = 11325, 7i = 1000, n - ?? = 10325, d =
4 1 , 956,/(N - «) 256.10325 ^_ _

, ,

rr —— =s — rr ~ — ::: -— nearly. Also e = 1 1
1

' il

;

therefore s = 60^ — -r- X logr. of = 5m x loe. ——

.

This theorem will give s when v is given, and by reverting,

it will give v in terms of s in the following manner.

Dividing by 57?i, gives — = log. of -;r3 = ^^^t by putting

1 . e^ — *
n = -r- i therefore, the natural number is 10"* r: —— :

am ' v' ~ a

hence v^- — a =^ -j^, and v =: \/(a + ^y^)* ^'^^ich, by

substituting the numbers above mentioned for the lettei-s,

gives V z=. n-134 for the last velocity, when the space s =
60|-, or when the ball arrives at the bottom of the water.

But now to find the time of passing through the water,

putting / = any time in motion, and s and v the correspond-

ing space and velocity, the general theorem for variable forces
- .1

gives t = — . But the above general value of s being tt x

hyp. log. V"" or 5 x hyp. log. ;^

~"
, therefore its fluxion

— lO-Ji/
-

-v — lOw , ^ n ^ C
y ~ , conseq. ^ or — = —

, the correct fluent ot

which is — X hyp. log. C—^ X ""^V ) = ' the time,

which when v zz 1 7*1 34, or 5 — 60|, gives 2*6542 seconds,

for the time of descent through the water.

PROBLEM
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tlon ; then, by the first line of those theorems, the velocity
being r, the horizontal range R is ~ tV"'^^^ » ^nd, by the 4th.

or last line of theorems, the greatest height H is =: -^^^s^v^.

But, by the parabola, i of the product of the base or range
and the hei!i;ht is the area, which is now required to be the
greatest possible. Therefore r x h ir t-^scv^ x ^\s^v^ must
be a maximum, or, rejecting the constant factors, s^c a maxi-
mum. But the cosine c, of the angle whose sine is s, is

V(i-s') ; therefore s^c — 5V( I - •^') = ^(i^ - 5^) is the
maximum, or its square ^* — i' a maximum. In fluxions

Ss^s — Ss'^s — rr 3 — 4^*; hence 4f = 3, or s^ — {-, and
s —^'^/S = '8660254, the sine of 60% which is the angle of

elevation to produce a parabolic trajectory of the greatest

area.

PROBLEM 14.

Suppose a cannon were discharged (if the point a ; it is

required to determine how high in the air the point c must
be raised above the horizontal line ab, so that a person at c

letting fall a leaden bullet at the moment of the canyioiis

explosion, it may arrive at b at the same instant as he hears

the report of the cannon^ but not till -^sth of a second after

the sound arrives at b : supposing the velocity oj sound to be

1 l^Ofeet per second, and. that the bulletfalls freely without

amj resistancefrom the air ?

Let r denote the time in which the

sound passes to c ; then will a: — -^0 t)e ^
the time in passing to b, and x the time

also the bullet is falling through CB.

Then, by uniform motion, 1 l40.r= AC,

and 1 140:r~ 114 =: ab, also by descents

of gravity, P : jc^ : : 16 : 16^" = BC. Then, by right-angled

triangles, Ac^— bc'=ab% that is 1 140V-— 16'x*= 1140\r^—
«'»4 X n40r + 114% hence 224 x 1140t— 16\r^ = 114%
or \Qlo''6x— x'^ = 50-11

i the root of which equa. is -r= 10*03

r.econds, or nearly 10 seconds ; conseq. BC=: 16.r^= 1610 feet

nearly, the height required.

PROBLEM 15.

Required the quantity, in cubicfeet, of light earth, neces-

sary toform a bank on the side of a canal, zvhich will just

support a pressure ofxeater 5 feet deep, and 300feet long.

And what will the carriage of the earth cost, at the rate of
1 shilling per ton ?

This
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This question may be considered as

relating either to water sustained by a

solid wall, or by a bank of loose earth.

In the former case, let ABC denote the

walljsustaining the pressure of the water

behind it. Put the whole altitude ab
= tf, the base BCor thickness at bottom
= b, any variable depth ad = ^, and

the thickness there de = y. Now the effect which any aum-
ber of particles of the fluid pressing at d have to break the

wall at B, or to overturn it there, is as the number of- particles

AD or T, and as the lever bd = rt — .r ; the' efore the iiuxion

of the effect of all the forces is {a— x)xx — axx — x'x^ the

fluent of which is ^ax^ — ^x^^ which, wheu. or = a, is Y'^ ^^^

the whole effect to break or overturn the wall at b •, and the

effects of the pressure to break at B and D vv^ill be as ab* and
AD^ But the strength of the wall at D, to resist the fracture

there, like the lateral strength of timber, is as the square of

the thickness, de'. Hence the curve line aec, bounding

the back of the wall, so as to be every where equally strong,

is of such a nature, that x^ is always proportional to 3/% or y
3

as x^y and is therefore what is called the semicubical parabola.

Now, to find the area aec, or content of the wall bounded
by tins convex curve, the general fluxion of the areaj/x be-

comes T^x, the flutnt of which is \x'^ z= \xx^ = |ry, that

is ~ of the rectangle A3 x Bc; and is therefore less than the

triangle abc, of the same base and height, in the proportion

of i to I, or of 4 to 5.

But in the case of a bank of made
earth, it would not stand with that

concave form of outside, if it were ne-

cessary, but would dispose itself in a

straight line AC, forming a triangular

bank abc. And even if this were not

the case naturally, it would be proper

to make it such by art ; because now
neither is the bank to be broken as with the effect of the

lever, or overturned about the pivot or point c, nor does it

resist the fracture by the effect of a lever, as before ; but, on
the contrary, every point is attempted to be pushed horizon-

tally outwards, by the horizontal pressure of the water, and
it is resisted by the weight or resistance of the earth at any
part, DE. Here then, by hydrostatics, the pressure of the

water against any point D, is as the depth ad ; and, in the

mangle of earth ade, the resisting quantity in DE is as de,

which
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which is also proportional to AD by similar triangles. So
that, at every point D in the depth, the pressure of the water
and the resistance of the soil, by means of this triangular

form, increase in the same proportion, and the water and the

earth will everywhere mutually balance each other, if at any
one point, as b, the thickness BC of earth be taken such as to

balance the pressure of the water at n, and then the strait^ht

line AC be drawn, to determine the outer shape of the earth.

All the earth that is afterwards placed against the side AC, for

a convenient breadth at top for a walking path, &c, will also

give the whole a sufficient security.

But now to adapt these principles to the numeral calcula-

tion proposed in the question ; the pressure of water against

the point B being denoted by the side Ab r: o feet, and the

weight of water being to earth as 1000 to 19S4, therefore as

1984 : 1000 : : 5 : 2')V2. = BC, the thickness of earth which
will just balance the pressure of the water th^re ; hence the

area of the triangle abc n ^-ab x bc — 2|- x 2*52 = 6-3 -,

this mult, by the length 300, gives 1890 cubic feet for the

quantity of earth in the bank ; and this multiplied by 1984
ounces, the weight of 1 cubic foot, gives, for the weight of it,

S749760 ounces = C];343GOlbs = l64--625 tons ; the expense

of which, at 1 shilling the ton, is 51. 4s. T-jd.

PROBLEM IG. -

A person standing at the distance of \0feetfrom the bot-

tom of a wallf which is supposed perfcctlj/ smooth and hardy

desires to know- in xehat direction he must throxv an elastic

ball against it, with a velocity of SOfeet per second, so that,

after rejlcctionfrom the wall, it matjfall at the greatest dis-

tance possiblefrom the bottom., on the horizontal plane, which

is 21- feet below the hand discharging the ball ?

In the annexed figure let DR
be the wall against which the

ball is thrown, from the point

A, in such a direction, that it

shall describe the parabolic

curve AE before striking the

wall, and afterv/ards be so reflected as to describe the curve

J.P. Noiv if ES bc tlie tangent at the point E, to the curve

AE described before the rcHection, and ef the tangent at the

same point to the curve which'the ball will describe after re-

flection, then will the angle ref be = ces ; and if the curve

FE bc produced, so as to have gf for its tangent, it will meet
AC produced in b, making bc iz AC, and the curve A E will be

similar
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Similar and equal to the portion be of the parabola bep, but

turned the contrary way. Conceiving either the two curves

AE and EP, or the continued curve bep, to be described by

a projectile in its motion, it is manifest that, whether the

greater portion of the curve be described before or after tlie

ball reaches the wall dr, will depend on its initial velocity,

and on the distance Ac or bc, and on the angle of projection.

The problem then is now reduced to this, viz. To hnd the

angle at which a ball shall be projected from B, with a given

impetus, so that the distance dp, at which it falls, from the

given point d, on the plane dp, parallel to the horizon, shall

be a maximum.
Now this problem may be

constructed in the following

manner : From any point E
in the horizontal line DC,
let fall the indefinite perp.

EG, on which set off eb =
the impetus corresponding ^
to the given velocity, and bi =: 2^ the distance of the hori-

zontal plane below the point of projection ; also, through I

draw AP parallel to DC. From the point b set off bp = BE

+ EI, and bisect the angle ebp by the line bh : then will eh
be the required direction of the ball, and ip the maximum
range on the plane A P.

For, since the ball moves from the point B, with the velo-

city acquired by falling through EB, it is manifest, from p. 156
vol. 2, that DC is the directrix of the parabola described by
the ball. And since both b and P are points in the curve,

each ofthem must, from the nature of the parabola, be as far

from the focus as it is from the directrix ; therefore B and
p will be the greatest distance from each other wheq the focus

F is directly between them, that is, when bp = be + cp.

And when bp is a maximum, since Bi is constant, it is ob-

vious that IP is a maximum too. Also, the angle fbh being

= EBH, the line bh is a tangent to the parabola at the point

B, and consequently it is the direction necessary to give the

range IP.

Cor. 1. When b coincides with i, ip will be = BP =
BE + EI = 2ei, and the angle ebh will be 45° : as is also

manifest from the common modes of investigation.

Cor. 2. When the impetus corresponding- to the Initial

velocity of the ball is very great compared with AC or BC
(fig. 1), then tlie part AE of ihe curve will very nearly coin-

cide witJi its tangent, and the direction and velocity at A may
be accounted the same as those at e without any sensible

Vol. III. Y error.
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error. In this case too the impetus be (fig. 2) will be very

great compared with li, and consequently, b and i nearly

coincidiiig, the angle Ei H will differ but little from 45'^.

Ca/cul, From the foregoing construction the calculation

will be very easy. Thus> the first velocity being 80 feet = r,

then (vol. 2 pa. 156) ~ = ^^^^ = 99-48186 = be the im-

petus j hence ei = fp ~ 10 1*98 1 86, and bp = be -f Ei =::

20\-46-il2. Now, in the right-angled triangle bip, the sides

BI and BP are known, hence IP = 201*4482, and the angle

IBP =89" iT 20": half the suppl. of this angle is 45" 21' 20"

= EBH. And, in fig. 1, IP — id = 20r4482 - 10 r=

191-4482 = DP, the distance the ball falls from the wall after

reflection.

PROBLEM 17.

From what height above the given point a must an elastic

ball be suffered to descendfreely by gravity ^ so that, after

striking the hard plane at b, it may be reflected back again

to the point a, in the least time possiblefrom the instant of
dropping it ?

Let c be the point required ; and put AC = T, and

AB = rt ; then J- -v/cB = \^{a + x) is the time in cb,

and iV'CA = ^Vx is the time in ca : therefore

^^(a 4- ;r) — ^Vx is the time down ab, or the time

of rising from B to A again : hence the whole time of

falling through cb and returning to A, is t\/('^ + ^)
— T^^i which must be a min. or 2V(« + x) — '/x b

a minimum, in fluxions ——
: —

;
- = 0, and hence

X = ^a, that is, ac = -Iab.

PROBLEM 18.

Given the height ofan inclined plane ; required its length,

so that a given power acting on a given latight, in a direc-

tion parallel to the plane, may draw it up in the least time

possible.

Let a denote the height of the plane, x its length, p the

power, and w the weight. Now the tendency down the plane

ate . aw . . f , x
IS = — , hence p •— — = the motive force, and =

x' '^
X p + w

v* = the accelerating force f: hence, by the theorems

for constant forces, pa. 342 vol. 2, ^^ = — = '' ''; must

be
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be a minimum, or —^ a min. ; in fluxions, 2(p^ — aw).rx
px— aiD ^

— px^x = 0, or px- zz 2aw, and hence p : w '.'. "id : X ', :

double the height of the plane to its length.

PROBLEM 19.

A cylinder of oak is depressed in teater till its top is just

level wit/i the surface, and then is suffered to ascend; it is

required to determine t/ie greatest altitude to which it will

rise, and the time of its ascent.

Let a = the length, and b the area or base of the cylinder,

w the specific gravity of oak, that of water being 1, also ;*

any variable height through which the cylinder has ascended.

Then, a — x being the part still immersed in the water,

{a~x) X b X \ = \a—x)b is the force of the water upwards

to raise the cylinder ; and a x b x m = abm is the weight

of the cylinder opposing its ascent ; therefore the elBcacious

force to raise the cylinder is (a -~ x)b — abm ; and, the mass

being abfn, the accelerating force is

(a— x)fe

—

nbni u — x—ani an — x f.

abm am am *^

putting « rr 1 — m the difFerence between the specific gra-

vities of water and oak.

Now if V denote the velocity of ascent at the same time

when X space is ascended, then by the theorems for variable
* 32

forces, vv = 32fx = — x (an^r — xx)^ therefore' -^ am '

32 ^anx — a^*

tr = — X {2anx — a:^), and v = 8v^
"

. — : but whenam ^ ^' ^ •2am

the cylinder has acquired its greatest ascent, v and v^ r: 0,

therefore 2anx — x~ = 0, and hence x = 2an the part of the

cylinder that rises out of the water, being = -1,5^ or -^^ of

its length.

To find when the velocity is the greatest, the factor 2anx
— x^ in the velocity must be a max. then 2ank — %xx — 0,

and X = an, being the height above the water when the ve-

locity is the greatest, and which it appears is just equal to the

half of 2an above found for the greatest rise, when the up-

ward motion ceases, and the cylinder descends again to the

same depth as at first, after which it again returns ascending

as before ; and so on, continually playing up and dowm to

the same highest and lowest points, like the vibrations of a

pendulum, the motion ceasing in both cases in a similar man-
ner at the extreme points, then returning, it gradually acce-

lerates till arri\'ing at the middle point, where it is the

greatest, then gradually retarding all the way to the next

y 2 extremity
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extremity of the vibration, thus making all the vibrations m
equal times, to the same extent between the higlicst and
lowest points, except that, by the small tenacity and friction

&c of the water against the sides of the cylinder, it will be
gradually and slowly retarded in its motion, and the extent

of the vibrations decrease till at length the cylinder, like the

pendulum, come to rest in the middle point of its vibrations^

where it naturally floats in its quiescent state, with the part

na of its length above the water.

The quantity of the greatest velocity will be found, by
substituting na for .r, in the general value of the velocity

8 V '
"

i when it becomes 8nV-r- = 4v/<^ "^ery nearly,
'2am '

'2m ^ ^ ' ''

the value ofm being *925, and consequently that of ?2 = 1 —
m^ '075.

To find the time / answering to any space x. Here

t =. — n = */— X :» and by the ISth

form the fluent is tzz^^2nm x a, where A denotes the

circular arc to radius 1 and versed sine — . Now at the mid-

die of a vibration ;r is = na, and then the vers. — = - = I
va na

the radius, and A is the quadrantal arc = 1'5708 ; then the
flu. becomes \^27nax 1 '5708 = '17 \/aX 1*3708 =-267 Vflf

for the time of a semivibration ; hence the time of each whole
vibration is "534 v/fl = -tt ^^^> which time therefore depends
on the length of the cylinder a. To make this time = 1

second, a must be —
( y Y "^'^ry nearly = 3i feet or 42 inches.

That is, the oaken cylinder of 42 inches length makes its

vertical vibrations each in I second of time, oris isochronous

with a common pendulum of 39-J- inches long, the extent of

each vibration of the former being 6-rV inches.

PROBLEM 20.

Required to iletermine the quantity of matter in a sphere,,

the cienst/y varying as the nth power of the distance from
the centre ?

Let r denote the radius of the sphere, d the density at

its surface, fl — 3* 14 16 the area of a circle whose radius is 1,

and X any distance from the centre. Then iax^ will be the

surface of a sphere whose radius is .r, v>'hich may be consi-

dered by cxpnnlon as generating the magnitude of the solid j

therefore 4t/j:^* will be the fluJiion of the magnitude ; but

as
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isr" : z^" :'. d : 1^ the density at the distance x, therefore

^ax-x X -^ zz " ^ — the fluxion of the mass, the
T" T"

fluent of which -——- 1 when r = r, is —-r-, the qu2n-
(?i + 3)r''' n + 3 ' ^

tity of the matter in the whole sphere.

Corol. 1. The magnitude of a sphere whose radius is r,

being yar^y which call m ; then the mass or solid content will

be —-r X w, and the mean density is —;.

Corol. 2. It having been computed, from actual experi-

ments, that the medium density of the whole mass of the

earth is about | times the density d at the surface, we can

now determine what is the exponent of the decreasing ratio

of the density from the centre to the circumference, sup-

posing it to decrease by a regular law, viz, as r" ; for then it

will be ^d — -, and hence ?: = — 4. So that, in this
n + 3 >

case, the lawof decrease is as r
~" t, or as -~ , that is, inversely

iis the f power of the radius.

PROBLEM 21.

Required to determine where a hodvy moving down the

convex side of a cycloid^ willfly offand quit the curve.

Let AVEB represent the cy-

cloid, the properties of Avhich

may be seen at arts. 146 and
147 vol. 2, and VDC its generat-

ing semicircle. Let E be the

point where the motion com-
mences, whence it moves along the curve, its velocity in*

creasing both on the curve, and also in the horizontal direc*

tion DF, till it come to such a point, F suppose, that the

velocity in the latter direction is become a constant quantity,

then that will be the point where it will quit the cycloid, and
afterwards describe a parabola fg, because the horizontal ve-

locity in the latter curve is always the same constant quantity,

by art. 16 vol. 2.

Put the diameter yc=rf, vh =a, vi=x; then VD= v'^t,
and ID = ^/{dx — x^). Now the velocity in the curve at F
In descending down ef, being the same as by falling through

HI or x-a, by art. 139, will be sz 8v'(;c-a)i but this ve-

locity
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locity in the curve at F, is to the horizontal velocity thercj

as VD to ID, because VD is parallel to the curve or to the

tangent at F, that is Vdx : ^ [dx — x-) : : %^{x — a) :

J^—H—^lJ—1 which is the horizontal velocity at f,

where the body is supposed to have that velocity a constant

quantity 5 therefore also V{x — a) x ^y{d — x), as well as

{x — a) X {d—x):z:ax'^-dx — ad— x'' is a constant quan-

tity, and also ax -j- dx — x^ ; but the fluxion of a constant

quantity is equal to nothing, that is ax + dx — 2xx = =
a -j- d — 2x, and hence x = ^a + id = vi, the arithmetical

mean between vh and vc.

If the motion should commence at v, then x or vi would
be = ^dj and i would be the centre of the semicircle,

PROBLEM 22.

Ifa body begin to movefrovi A, with a given velocity, along

the quudrant of a circle ab; it is required to show at what

point it willfly offfrom the carte.

Let D denote the point v/here the

body quits the circle adb, and then de-

scribes the parabola DE. Draw the or-

dinate DF, and let GA be the height

producing the velocity at A. Put GA =fl,

AC or CD = r, AF = .r5 then the ve-

locity in the curve at d will be the same
^

as that acquired by falling through gf C Ji E
or</+vr, which is, asbefore, 3 V'(a'-}-;r);

but the velocity in the curve is to the horizontal velocity as

T>n to )i\n or as cd to cf by similar triangles, that is, as

r -.r — X :: %>J{x + a) : 8^/(.r -{- a) X —-, which is to

be a constant quantity where the body leaves the circle,

therefore also {r— x)>^{x +a) and {I'— xY x {x + a) z con-

stant quantity j the fluxion of v/hich made to vanish, gives
r - 2a

^ = -y- = AF.

Hence, if a — 0, or the body only commence motion at a,

then A = -|.r, or af = 4ac when it quits the circle at D. But
if a or Ga were == ^r or | ac, then r — 2fl -- 0, and the body
world instantly quit the circle at the vertex A, and describe

a parabola circumscribing it, and having the same vertex A.

PROBLEM
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PROBLEM 23.

To ileternune the position of a bar or btam ab, being sup^

porff.t in ei/ui/ihii.) by two cords ac, bc, having their two

eud^Jixed in the beam, at a and b.

By art. 210 vol. 2, the position

will be such, that its ceatre of gra-

vity G will be in the perpendicular

or plumb line cg.

CoroL 1. Draw gd parallel to

the cord ac Then the triangle

CGD, having its three sides in the

directions of-", or parallel to, the three

forces, viz, rhe weight of the Oeam, and the tensions of the

two cords AC, ac, these three forces will be proportional to

die three mJcs cg, gd, cd, respectively, by art. 44 j that is,

CG is as the weight of the beam, gd as the tension or force

pf AC, and CD as the tension or force of bg.

Corol. 2. If two planes eaf, hbi, perpendicular to the

two cords, be substituted instead of these, the beam will be

still supported by the two planes, just the same as before by
the cords, because the action of the planes is in the direction

perpendicular to their surface; and the pressure on the planes

will be just equal to the tension or firce of the respective

cords. So that it is the very same thing, whether the body

is sustained by the two cords AC, bc, or by the two planes

EF, HI ; the directions and quantities of the forces acting at

A and B being the same in both cases.—Also, if the body be

made to vibrate about the point c, the points a, b will de-

scribe circular arcs coinciding with the touching planes at A,

B ; and moving the body up and down the planes, will be

just the same thing as making it vibrate by the cords j con-

sequently the body can only rest, in either case, when the

centre of gravity is in the perpendicular cg.

PRORLEM 24.

To determine the position of the beam ab, hanging by one

cord ACB, having its ends fastened at a and b, and sliding

freely over a tack or puiteA^ fixed at c.

g being the centre of gravity of the beam, CG will be per-

pendicular to the horizon, as in the last problem. Now as

the
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the cord acb moves freely about the point

c, the tension of the cord is the same in

every part, or the same both in AC and bc.

Draw GD parallel to AC : then the sides of

the triangle cgd are proportional to the

three forces, the weight and the tensions

of the string ; that is, CD and DG are as

the forces or tensions in cb and ca. But
these tensions are equal ; therefore CD = DG, and conseq.

the opposite angles dcg and DGc are also equal: but the angle

DGC is = the alternate jngle acg ; theref. the angle acg =
BCG ; and hence the line cg bisects the vertical angle acb,

and conseq. Ac : cb : : ag : gb.

PROBLEM 25.

To determine the position of the beam ab, moveable about

the end b, and sustained by a given weight g, hanging by a

cord Acg, going over a pulley at c, and fixed to the other

end A.

Let w = the weight of the beam,
and G denote the place of its cen-

tre of gravity. Produce the direc-

tion of the cord ca to meet the

horizontal line BE in d ; also let

fall AE perp. to be : then ae is the

direction of the weight of the beam, and DA the direction of

the weight g, the former acting at G by the lever bg, and
the latter at A by the lever ba ; theref. the intensity of the

former is to x eg, and that of the latter ^ x ba ; but these

are also proportional to the sines of their angles of direction

with AB, that is, of the angles bae, and bad ; therefore the

whole intensity of the former is w x bg x sin. bae, and of

the latter it is ^ x ba x sin. bad. But since these two
forces balance each other, they are equal, viz, w x bg x sin.

BAE —gx ba X sin. bad, and therefore r^; : ^ : : ba x sin.

BAD : bg X sin. BAE, or o^ X BG : ^ X BA : : sin. bad :

sin. BAE.

PROBLEM 26.

To determine the position of the beam ab, sustained by the

given weights m, n, by means of the cords Acm, bd», going
over thefixed pulleys c, d.

Let
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Let G be the place of the centre

of gravity of the beam. Now the

effect of the weight >}?, is as w?,

and as the lever AG, and as the

sine of the angle of direction A j

and the effect of the weight 7i, is

as ?2, and as the lever bg, and as

the sine of the angle of direction B ; but these two effects

are equal, because they balance each other ; that is, m X AG
X sin. A = /< X BG X sin. B j theref. vi x AG : n X BG :

:

sin. B : sin. A.

PROBLEM 27.

To determine the position of the two posts ad and be,

supporting the beam ab, so that the beam may rest in

-rquilibrio.

Through the centre of gravity

G of the beam, draw cg perp. to

the horizon; from any point c
in which draw cad, cbe through

the extremities of the beam ; then

AD and BE will be the positions

of the two posts or props re-

quired, so as AB may be sustained

in equilibrio", because the three

forces sustaining any body in such a state, must be all directed

to the same point c.

Corol. If GF be drawn parallel to cd; then the quantities

of the three forces balancing the beam, will be proportional

to the three sides of the triangle CGF, viz, cg as the weight

of the beam, cf as the thrust or pressure in be, and fg as the

thrust or pressure in ad.

Scholium. The equilibrium may be equally maintained by
the two posts or props ad, be, as by the two cords ac, bc,

or by two planes at a and B perp. to those cords.—It does not

always happen that the centre of gravity is at the lowest place

to which it can get, to make an equilibrium ; for here when
the beam ab is supported by the posts da, eb, the centre of
gravity is at the highest it can get ; and being in that posi-

tion, it is not disposed to move one way more than another,

and therefore it is as truly in equilibrio, as if the centre was at

the lowest point. It is true this is only a tottering equili-

brium, and any the least force will destroy it ; and then, if

the beam and posts be moveable about the angles a, b, d, e,

which
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which is all along supposed, the beam will descend till it Is

below the points D, £, and gain such a position as is described

in prob. 2d, supposing the cords iixed at c and d, in the fig.

to that prob. and then G will be at the lowest point, coming
there to an equilibrium again. In planes, the centre uf gra-

vity G may be either at its highest or lowest point. And
there are cases, when that centre is neither at its highest nor
lowest point, as may happen in the case of prob. 24.

PROBLEM 28.

Supposing the beam ab hansin^ h\j a pin at b, and lying

on the Wall ac ; it is requirtU to determine the forces or

pressures at the points a and b, and their directions.

Draw AD perp. to ab, and through
G, the centre of gravity of the beam,
draw GD perp. to the horizon ; and
join BD. Then the weight of the

beam, and the two forces or pres-

sures at A and b, v.'ill be in the di-

rections of the three sides of the

triangle adG; or in the directions

of, and proportional to, the three

sides of the triangle gdh, having

drawn GH parallel to BD; viz, the weight of the beam as gd,
the pressure at A as hd, and the pressure at B as gh, and in

these directions.

For, the action of the beam is in the direction gd ; and
the action of the wall at a, is in the perp. ad ; conseq. the

stress on thcpin at v> must be in the direction bd, because

all the three forces sustaining a body in equilibrio, must tend
to the same poiut, as d.

Corol. 1. If the beam were supported by a pin at a, and
laid upon the wall at B ; the like construction must be made
at B, as has been done at a, and then the forces and their

directions will be obtained.

Corol. 2. It is all the same thing, whether the beam is

sustained by the pin e and the wall ac, or by two cords BE,

AF, acting in the directions db, da, and with the forces

HG, hd.

PROBLEM 29.

To determine the Quantitits and Directions of the Forces,

exerted bij a heavy beam ab, at its two Extremities and its

Centre of Gravitj/, bearing against a perp. wall at its upper

end B.

From
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From B draw Be perp. to the face of

the wall I E, which will be the direction

of the force at B ; also ^hrongh G, the

cenne of gravity, draw cgd perp. to

the horizOiU^i line ae, then cd is the

direction of the weight of the beran

;

and because these two forces meet in

the point c, the third force or push A, must be in CA, directly

from c ; so that the three forces are in the directions ci), bc,

CA, or in the directions CD, da, ca-, and, these last three

forming a triangle, the three <l>rccs are not only in those di-

rections, but are also proportional to these three lines ; viz,

the weight in or on the beam, as the line CD j the push against

the wall at B, as the horizontal line ad j and the thrust at

the bo:tom, as the line Ac.

Some of the foregoing problems will be found useful in

different cases of carpentry, especially In adapting the framing

of the roofs of buildings, so as to be nearest in equilibrio in

all their parts. And the last problem, in particular, will be
very useful in determining the push or thrust of any arch

against its piers or abutments, and thence to assign their

thickness necessary to resist that push. The following pro-

blem will also be of great use in adjusting the form of a

mansard roof, or of an arch, and the thickness of every part,

so as to be truly balanced In a state of just equilibrium.

PROBLEM 30.

Let there be any number of lines, or bars, or beams, ab,

BC, CD, DE, &V, all in the same tertical plane ^ connected to-

gether andfreely moveable about the joints or angles a, b,

c, D, E, &"c, and kept in equilibrio by weights laid on the an-

gles : It is required to assign the proportion of those weights;

as also theforce or push in the direction of the said lines ; and
the horizontal thrust at every angle.

Through any

point, as d, draw

a vertical line

a-D^g &c; to

which, from any

point, as c, draw
lines in the direc-

tion of, or paral-

lel to, the given lines or beams, viz, Cfl parallel to ab, and cb
parallel to bc, and ce to de, and c/"to ef, and c^to fg, &c ;

also
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also CH parallel to the hori^^on, or perpendicular to the ver-

tical line CLclgj in which also all these parallels terminate.

Then will all these lines be exactly proportional to the
forces acting or exerted in the directions to which they are

parallel, and of all the tliree kinds, viz, vertical, horizontal,

and oblique. That is, the oblique forces or thrusts in direc-

tion of the bars ABj BC, CD, DE, EF, FG,

are proportional to their parallels ca, cb, CD, ce, cj\ eg \

and the vertical weights on the angles £, c, D, E, F, 8cc.

are as the parts of the vertical . ub, bvt, Dc", ^j\fgi
and the we'ght of the w^hole frame A b c d e k G,

is proportional to the sum of all the verticals, or to ag\ also

the horizontal thrust at every angle, is every where the same
constant quantity, and is expressed by the constant horizon-
tal line CH.

JJfVHinstration. All these proportions of the forces derive

and follow immediately from the general well-known pro-

perty, in Statics, that when any forces balance and keep each
other in equilibrio, they are respectively in proportion as the

lines drawn parallel to their directions, and terminating each
other.

Thus, the point or angle B is kept in equilibrio by three

forces, viz, the weight laid and acting vertically downward
on that point, and by the two oblique forces or thrusts of the

two beams ab, cb, and in these directions. But ca is parallel

to AB, and c^ to Bc, and ab to the vertical weight ; these

three forces are therefore proportional to the three lines ab^

ca, cb.

In like manner, the angle c Is kept in its position by the

weight laid and acting vertically on it, and by the two oblique

forces or thrusts in the direction of the bars bc, cd : conse-

quently these three forces are proportional to the three lines

6d, cby CD, which are parallel to them.

Also, the three forces keeping the point D in its position,

are proportional to their three parallel lines, Dc, CD, ce. And
the three forces balancing the angle e, are proportional to

their three parallel lines ef, ce, cf. And the three forces

balancing the angle f, are proportional to their three parallel

linesy^, c/, eg. And so on continually, the oblique forces

or tlirust in the directions of the bars or beams, being al»

ways proportional to the parts of the lines parallel to them,
intercepted by the common vertical line j while the vertical

forces or weights, acting or laid on the angles, are propor-

tional to the parts of this vertical line intercepted by the two
lines parallel to the lines of the corresponding angles.

Again, with regard to the horizontal force or thrust : since

the
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the line DC represents, or is proportional to the force in the

direction dc, arising from the weight or pressure on the angle

D; and since the oblique force Dc is equivalent to, and re-

solves into, the two dh, hc, and in those directions, by the

resolution offerees, viz, the vertical force dh, and the hori-

zontal force HC ; it follows, that the horizontal force or thrust

at the angle D, is proportional to the line CH ; and the part

of the vertical force or weight on the angle d, which pro-

duces the oblique force DC, is proportional to the part of the

vertical line dh.
In like manner, the oblique force c^, acting at c, in the

direction CB, resolves into the two in, uc ; therefore the

horizontal force or thrust at the angle c, is expressed by the

line CH, the very same as it was before for the angle D ; and
the vertical pressure at c, arising from the weights on both D
and c, is denoted by the vertical line bu.

Also, the oblique force r/c, acting at the angle B, in the

direction ba, resolves into the two oh, hc ; therefore again

the horizontal thrust at the angle B, is represented by the line

CH, the very same as it was at the points c and D ; and the

vertical pressure at b, arising from the weights on B, c, and
D, is expressed by the part of the vertical line oH.

Ihus also, the oblique force ce, in direction db, resolves

into the two ch, ne, being the same horizontal force, with the

vertical He ; and the obliq le force cf, in direction ef, re-

solves into the two ch. h/'; and the oblique force cz, in

direction fg, resolves into the two cH, h^ •, and the oblique

force eg, in direction FG, resolves into the two CH, H^; and
so on continually, the horizontal force at every point being

expressed by the same constant line CH j and the vertical

pressures on the angles by the parts of the verticals, viz, an
the whole vertical pressure at b, from the weights on the

angle e, c, d: and ^h the whole pressure on c from the

weights on C and D ; and dh the part of the weight on d
causing the oblique force DC ; and H^ the other part of the

weight on D causing the oblique pressure de ; and n/'the

whole vertical pressure at E from the weights on D and E

;

and H^ the whole vertical pressure on F arising from the

weights laid on D, E, and P. And io on.

So that, on the whole, an denotes the whole weight on
the points from D to A ; and Hg the whole weight on the
points from D to G j and ag the whole weight on all the
points on both sides ; while ah, 6d, Be, ef, Jg express the
several particular weights, laid on the angles B, c, D, E, F.

Also, the horizontal thrust is everywhere the same con-
stant quantity, and is denoted by the line ch.

Lastly,
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Lastly, the several oblique forces or thrusts, in the direC"

tions AB, BC, CD, DE, liF, FG, are expressed by, or are pro-

portional to, their corresponding parallel lines, ca, cb, cd,

ce, cf, eg.

Carol . 1. It is obvious, and remarkable, that the lengths

of ihe bars An, bc, occ, Jo not affect or alter the proportions

of any of these loads or thrusts ; since all the lines ca, c/;, a/y,

&c, remain the same, whatever be the lengths of ab, bc, &.c.

1'he pusltions of the bars, and the weights on the angles de-

pending mutually on each other, as well as the horizontal

anci obl:que thrusts. Thus, if there be given the position of

DC, and the wc-ghrs or loads laid on the nrgles D, C, B ; set

these on the .e.cical, dh, t>!>, ba^ then c/;, Cflgive the direc-

tions or positions of CB, ba, as well as the quantity or pro-

portion CH of the consiant horizontal thrust.

Co) ol. 2. If CH be made radius ; then it is evident that

Htf is the tangent, and ca the secant of the elevation of ca or

AB above the horizon ; also ub is the tangent and c6 the se-

cant of the elevation of cb or cB ; also hd asid cd the tangent

and secant of the elevation of CD ; also ue and ce the tangent

and secant of the elevation of ce or de ; also h/' and c/ the

tangent and secant of the elevation of ef ; and so on ; also

the parts of the vertical aby ho, ef\Jgf denoting the weights

laid on the several angles, are the differences of the said

tangents of elevations. Hence then in general,

1st. The oblique thrusts, in the directions of the bars, are

to one another, directly in proportion as the secants of their

angles of elevation above the horizontal directions ; or, which

is the same thing, reciprocally proportional to the cosines of

the same elevadons, or reciprocally proportional to the sines

of the vertical angles, a, h, D, e,f, g, &c, made by the ver-

tical line with the several directions of the bars ; because the

secants of any angles are always reciprocally in proportion as

their cosines.

2. The weight or load laid on each angle, is directly pro-

portional to the difference between the tangents of the ele-

vations above the horizon, of the two lines which form the

angle.

3. The horizontal thrust at every angle. Is the same con-

stant quantity, and has the same proportion to the weight on

the top of th« uppermost bar, as radius has to the tangent of

the elevation of that bar. Or, as the whole vertical agy is to

the hne ch, so is the weight of the whole assemblage of bars,

to the horizontal thrust. Other properties also, concerning

the weights and the thrusts, might be pointed out, but they

are less simple and elegant than the above, and are therefore

oa"»itted i
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omitted ; the foUowi' g only excepted, which are inserted

here on account of tlieir usefuhiess.

Corol. 3. It may hence be deduced also, that the weight

or pressure laid on any angle, is directly proportional to tae

continual product of the sine of that angle and of the secants

of the elevations of the bars or lines which form it Thus,

in the triangle /^CD, in which the side bo is proportional to

the weight laid on the angle c, because the sides of any tri-

angle are to one another as the sines of their opposite angles,

therefore as sin. d : c^ : : sin. 6cd : bD j that is, 6d is as

—

^

X cb ; but the sine of angle d is the cosine of the
sill. 1)

' °

elevation D' H, and the cosine of any angle is reciprocally

proportional to the secant, therefore 6d i. as sin. 6cd x sec.

DCH X cb
J
and c^ being as the secant of the angle ben of

the elevation of be or bc above the horizon, therefore bv> is

as sin. AcD X sec. 6cH X sec. dch ; and the sine of bcvt

being the same as the sine of its supplement bcd; therefore

the weight on the angle c, which is as od, is as the sin. bcd
X sec. DCH X sec. ^ch, that is, as the continual product of

the sine of that angle, and the secants of the elevations of its

two sides above the horizon.

Corol. 4. Further, it easily appears also, that the same
weight on any angle c, is directly proportional to the sine of
that angle bcD, and inversely proportional to the sines of
the two parts bcp, dcp, into which the same angle is divided

by the vertical line cp. For the secants of angles are reci-

procally proportional to their cosines or sines of their com-
plements : but BCP r= c6h, is the complement of the eleva-

tion ^CH, and dcp is the complement of the elevation dch ;

therefore the secant of 6ch x secant of dch is reciprocally

as tjie sin. ^cp x sin. dcp ; also the sine of 6cd is = the
sine of its supplement Bcd ; consequently the weight on the
angle c, which is proportional to sin. 6cd X sec. ^ch X

sec. dch, is also proportional to ^

—

'—
, when the* ^ sin. BCP X sill. DCP

whole frame or series of angles is balanced, or kept in equi^
librio, by the weights on the angles j the same as in the
preceding proposition.

Scholium. The foregoing proposition is very fruitful in
its practical consequences, and contains the whole theory of
arches, which may be deduced from the premises by sup-
posing the constituting bars to become very short, like arch
stones, so as to form the curve of an arch. It appears too,

that the horizontal thrust, wliich is constant or uniformly the

same
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same throughout, is a proper measuring unit, by means of
which to estimate the other thrusts and pressures, as they
are all determinable from it and the given positions ; and the
value of it, as appears above, may be easily computed from
the uppermost or vertical part alone, or from the whole as-

semblage together, or from any part of the whole, counted
from the top downwards.
The solution of the foregoing proposition depends on this

consideration, viz, that an assemblage of bars or beams, being
connected together by joints at their extremities, and freely

movable about them, may be placed in such a vertical posi-

tion, as to be exactly balanced, or kept in equilibrio, by their

mutual thrusts and pi-essures at the joints ; and that the effect

will be the same if the bars themselves be considered as with-

out weight, and the angles be pressed down by laying on
them weights which shall be equal to the vertical pressures

at the same angles, produced by the bars in the case when
they are considered as endued with their own natural weights.

And as we have found that the bars may be of any length,

without affecting the general properties and proportions of
the thrusts and pressures, therefore by supposing them to

become short, like arch stones, it is plain that we shall then
have the same principles 'and properties accommodated to a

real arch of equilibration, or one that supports itself in a per-

fect balance. It may be further observed, that the conclu-

sions here derived, in this proposition and its corollaries,

exactly agree with those derived in a very different way, in

my principles of bridges, viz, in propositions 1 and 2, and
their corollaries.

PROBLEM 31.

If the whole figure vi the last problem be irwcrtcd, or

turned round the horizontal line ag as an axis, till it be com-
pletely reversed^ or in the same vertical plane belou^ thefirst

position, each angle d, d, S(c, being in the same plumb line

;

and if weiiihts i^ k, /, m, n, which are respectiveli/ ecjual to

the weights laid on the angles b, c, d, s, f, of thefirstfigure,
be now suspended by threadsfrom the corresponding angles

b, c, d. e,f, of the lower figure ; it is required to show that

those weights keep thisfigure in exact equilibrio, the same as

the J'ormer, and all the tensions or forces in the latter case,

whether vertical or horizontal or oblique, will be exactly equal

to the corresponding forces of weight or pressure or thrust

in the like directions of thefirstfigure.
This
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mere computation. For thus, in a simple and easy way he
obtains the shape of an equihbrated arch or bridge; and thus

also he readily obtains the positions of the rafters in the frame

^f an equilibrated curb or mansard roof; a single instance of

which may serve to show the extent and uses to which it

may be applied. Thus, if it should be required to make a

curt) frame roof having a given

width AE, and consisting of four

jrafters ab, bc, cd, de, which shall

either be equal or in any given pro-

portion to each other, 'Ihere can

be no doubt but that the best form
of the roof will be that which puts

all its parts in equilibrio, so thai there may be no unbalanced

parts which may require the aid of lies or stays to keep the

frame in its position Here the mechanic has nothing to do,

but to take four like but small pieces, that are either equal

or in the same given proportions as those proposed, and con-

nect them closely together at the joints A, b, c, d, e, by pins

or strings, so as to be freely moveable about them ; then

suspend this from two pins a, e,

fixed in a horizontal line, and the

chain of the pieces will arrange

itself in such a festoon or form,

ahcde, that all its parts will come
to rest in equilibrio. Then, by
inverting the figure, it will ex-

hibit the form and frame of a

curb roof a^y^e, which will also

be in equilibrio, the thrusts of
the pieces now balancing each

other, in the same manner as was done by the mutual pulls

or tensions of the hanging festoon ab c de. By varying the

distance acy of the points of suspension, moving them nearer

to, or farther off, the chain will take ditlerent forms ; then
the fraiue Alcde may be made similar to that form which
has the most pleasing or convenient shape, found above as a

model.

Indeed this principle is exceeding fruitful in its practical

consequences. It is easy to perceive that it contains the

whole theory of the construction of arches: for each stone of

an arch may be considered as one of the rafters or beams in

the foregoing frames, since the whole is sustained by the

mere principle gf equilibration, and the method, in its appli-

cation, will afford some elegant and simple solutions of the

most diiiicult cases of this important problem.

PROBLEM
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PROBLEM 3'2.

Of all Hollow CylinderSy whose Lengths and the Diaine--

iers of the Inner and Outer Circles continue the same, it is

required to show xehat will he the Position of the Inner

Circle when the Cylinder is the Strongest Laterally.

Since the mngnitnde of the two circles are constant, the

area of the soHd space, included between their two circum-

ferences, will be the same, whatever be the position of the

inner circle, that is, there is the same number of fibres to be

broken, and in this respect the strength will be always the

same. The strength then can only vary according to the

situation of the centre of gravity of the solid part, and this

again will depend on the place where the cylinder must first

break, or on the maimer in which it is fixed.

Now, by cor. 8 art. 25 1 v. 2,

the cylinder is strongest when
the hollow, or inner circle,

is nearest to that side where
the fracture is to end, that is,

at the bottom when it breaks
first at the upper side, or when
the cylinder is fixed only at

one end as in the first figure.

But the reverse will be the

case when the cylinder is

fixed at both ends ; and con-

sequently when it opens first below, or ends above, as in the
2d figure annexed.

PROBLEM 33.

To determine the Dimensions of the Strongest Rectangular
Beam that can be cut out of a Giveii Ci^Under.

Let AB, the breadth of the required ^
beam, be denoted by by ad the depth by
d, and the diameter Ac of the cylinder

by D. Now when ab is horizontal, the

lateral strength is denoted by bd~ (by art.

248 vol. 2), which is to be a maximum.
But AD- = AC- — AB% or Cf^ = D^ — 3^

;

theref. ^af^=(D^- ^O-^^ 0^*^-6' is a maxi-

mum: in fluxions v>^b — Sb^b = — d' — 3^% or d'' rz Sb'^ •

also ^^ = D' - b'" ~ 3b' ~ b' =z '2b\ Conseq. b^ : ^/^ : d" : :

1:2: 3, that is, the squares of the breadth, and of the
depth, and of the cylinder's diameter, are to one another
respectively as the three numbers 1, 2, 3.

Z 2 Carol.
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Carol. 1. Hence results this easy prac-

tical construction: divide the diameter AC
into three equal parts, at the points E, f

;

erect the perpendiculars eb, fd ; and join

the points c, D to the extremities ot the

diameter : so shall ABCD be the rectangu-

lar end of the beam as required. For,

because AE, AC, ac are in continued pro-

portion (theor. 87 Geom.), theref. AE Ac : : AB^ : AC^; and
in like manner af : Ac : : ad" : AC' ; hence AE : AF : AC :

:

Ab' : ad^ : ac^ : : 1 : 2 : 3.

Carol. 2. The ratios of the three b, d, d, being as the

three v^l, v/2, -v/S, or as 1, 1-414, r732, are nearly as the

three 5, 7, S*6, or more nearly as 12, 17, 2()-8.

Corol. 3. A square beam cut out of the same cylinder,

would have its side z= n \/{— ^d-v/Q. And its solidity would
be to that of the strongest beam, as -[d" to 4d*\/2, or as 3

to 2'\/2, or as 3 to 2*823 ; while its strength would be to that

of the strongest beam, as {nV^f to Dv^y x |-d^, or as ^V2
to l-v/S, or as 9v/2 to 8^/3, or nearly as 101 to 110.

Corol. 4. Either of these beams will exert the greatest

lateral strength, when the diagonal of its end is placed verti-

cally, by art. 252 vol. 2.

Corol. 5. The strength of the whole cylinder will be to

that of the square beam, when placed with its diagonal ver-

tically, as the area of the circle to that of its inscribed square.

For, the centre of the circle will be the centre of gravity of

both beams, and is at the distance of the radius from the

lowest point in each of them ; conseq. their strengths will

be as their areas, by art. 243 vol. '2.

PROBLEM 34.

To determine the Differe)ice in tite Strength of a Trian-
gular Beam, according as it lies with the Edge or with the

Flat Side Upwards.

In the same beam, the area is the same, and therefore the

strength can only vary with the distance of the centre of

gravity from the highest or lowest point; but, in a triangle, the

distance of the centre of gravity from an angle, is double of
its distance from the opposite side; therefore the strength of

the beam will be as 2 to 1 with the different sides upwards,
under different circumstances, viz, when the centre of gra-

vity is farthest from the place where fracture ends, by art. 243
vol. 2 ; that is, with the angle upwards when the beam is

supported
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swpported at both ends ; but with the side upwards, when it

is supported only at one end, (art. '252 vol. 2) because in the

former case the beam breaks iirst below, but the reverse in

the latter case.

PROBLEM 35.

Gken the Length and Weight of a CijUnder or Prism,
placed Ilorizonta/tj/ with one end firmly fixed, and willjust

-

support a given weight at the other end without breaking; it

is required to find the Length of a similar Prism or Cj/lin-

der which, when supported in like manner at one end, shall

just bear without breaking another given weight at the un-

supported end.

Let / denote the length of the given cylinder or prism, d
the diameter or depth of its end, w its weight, and u the

weight lianging at the unsupported end ; also let the like

capitals L, d, w, u, denote the corresponding particulars of

the other prism or cylinder. Then, the weights of similar

solids of the same matter being as the cubes of their lengths,

as l^ : L^ : : w : w, the weight of the prism whose length

is L, Now iwl will be the stress on the first beam by its own
weight w acting at its centre ofgravity, or at half its length;

and lu the stress of the added weight ii at its extremity, their

sum (4^:^' + ^0^ will therefore be the whole stress on the given

beam : in like manner the whole stress on the other beam,

whose weight is w or -- w, will be (-^w + u)l or {-—w -\- u)l.

But the lateral strength of the first beam is to that of the

second, as d^' to d^ (art. 246 vol. 2), or as /^ to L^; and the

strengths and stresses of the two beams must be in the same
ratio, to answer the conditions of the problem ; therefore as

(iw + ii)l : (—3^ + u)l : ; /^ : l"; this analogy, turned into

an equation, gives l^" — /l + 7-"^ =:: 0, a cubic equa«

tion, from which the numeral value of L maybe easily deter-

mined, when those of the other letters are known.
Corol. J. When u vanishes, the equation gives L^ =

/l , or L = /, whence w : w A- 2u :: t : "L, tor the

length of the beam, which will but just support its own
weight.

Corol. 2. If a beam just only support its own weight,

when fixed at one end ; then a beam of double its length,

fixed at both ends, will also just sustain itself: or if the one
just break, the other will do the same.

PROBLEM
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PROBLEM 36.

Given the Length and Weight of a Cylinder or Prism,
Jred Hoyizontalhf as in theforegoing problem, and a "weight

which, xidien hung at a given -point. Breaks the Prism : it

i^ rtquired to determine how much longer the Prism, ofequal
Diameter or of equal Breadth and Depth, may be extended

before it Break, either by its own weighty or by the addition

of any other adventitious weight.

Let / denote the length of the given prism, w its weight,

and u a weight attached to it at the distance d from the fixed

end; also let l denote the required length of the other prism,

and u the weight attached to it at the distance D. Now the

strain occasioned by the weight of the first beam is ^wl^ and
that by the weight u at the distance d, is du, their sum \wl

-f du being the whole strain. In like manner iWL +• du is

the strain on the second beam ; but / : l : : <x' : y- = w the

weight of this beam, theref. -^ + i>u = its strain. But the

strength of the beam, which is just sufficient to resist these

strains, is the same in both cases ; therefore — -)- DU =
^wl + c?M, and hence, by reduction, the required length

t= v^(^x ).

Carol. 1 . When the lengthened beam just breaks by its

own weight, then u = or vanishes, and the required length

becomes l n -•(/ x ;.

Carol. 1. Also when u vanishes, if d become — /, then

t = /a/ is the required length.

PROBLEM 37.

JM ab be a beam moveable about the end a, so as to

hwke any angle BAG with the plane of the horizon ac: it is

required to determine the position ofa prop or supporter de
of a given length, xuhich shall sustain it with the greatest ease

in any given position; also to ascertain the angle bac when
the leastforce which can sustain ab^ is greater than the least

force in any other position.

Let
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Let G be the centre of gravity of the

beam; and draw on perp. to ab^ on to

AC, nvi to G))i, and afh to de. Put
r = AG, /; =r DE, w =. the weiglit of the

beam ab, and a71 = .v. Then, by the

nature of the parallelogram of forces,

en : C)/i, or by sim. triangles, AG = r :

All = X : : XD : -— , the force which acting

at G in the direction viG, is sufficient to sustain the beam j

and, bv the nature of the lever, ae : AG = r : : — the re-

quisite force at G : — , the force capable of supporting it at E

in a direction perp. to ab or parallel to mG:, and again as

AF : AE : : — :— , the force or pressure actually sustained by

the given prop de in a direction perp. to af. And this latter

force will manifestly be the least possible when the perp. af
upon DE is the greatest possible, whatever the angle B ac may
be, which is when the triangle ade is isosceles, or has the

side AD = AE, by an obvious corol. from the latter part of
prob. 6 pa. 171 of this volume.

Secondly, for a solution to the latter part of the problem,

we have to find when — is a maximum ; the angles D and

E being always equal to each other, white they vary in mag-
nitude by the change in the position of ab. Let af produced
meet g/z in H : then, in the similar triangles adf, ah«, it

•will be AF : A?i = >r : : DF = i/i : h/z, hence~ = ~. and

conseq. -^ x a^ =: -j- x w. But, by theor. 83 Geom. and

comp. AG + An = r -\- X : ah zz x : : gh =. \/{r^ — x") :

H7i = ——V(r'^—.r-)-=:xV:—-: consequently the force

-J— X :y, acting on the prop, is also truly expressed by

V-\/—-. Then the fluxion of this made to vanish gives

= ^^--r— r the cos. angle bag = 51° 50', the inclinatioaX

required.

PROBLEM
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PROBLEM 38.

Suppose the Beam ab, instead of being moteable about the

centre a, a^ in the last problem, to be supported in a given

position bi/ means of the given prop de ; it is required to

determine the position of that prop, so that the prismatic

beam ac, on ivhich it stands^ may be the least liable to break-

ing, this latter beam being only supported at its two ends a
and c.

Put the base AC = b, the prop, de = p,

AG = r, the weight of ab = w, s and c the

sine and cosine of Z. Ay x zz sin. A. E,

1/ = sin. Z. D, and z = ae. Then, by

trigon. z :y :: p :Sy or -^- = y, and

ad rr— : also cw — the force of the beam
i

at G in direction cm. Let f denote the force sustaining the

beam at E in the direction ED : then, because action and re-

action are equal and opposite, the same force will be exerted

at D in the direction de : therefore AG . cw = FZXy and

F = — . Again, the vertical stress at d. will be as F X sine

retry pf , px , ,

d X AD . DC n Fy . AD . DC = X — (6 — ^—) = (sub-

s ,. . ,11 rctvs pT ^^ hs — px
stitutmg— for Its equal —) x — X r: rcw x

- ~ ^'

- n —^ X (— — r) = a minimum by the problem.

Conseq. — — x is a minimum, or x a maximum, that is,

X—\, and the angle e is a right angle. Hence the point e

is easily found by this proportion, sin. A : cos. A : : ED : E4.

problem 39.

To explain the Disposition of the Parts of Machines.

When several pieces of timber, iron, or any other materials,

are employed in a machine or structure of any kind, all the

parts, both of the same piece, and of the different pieces in

the fabric, ought to be so adjusted with respect to magnitude,

that the strength in every part may be, as near as possible, in

a constant proportion to the stress or strain to which they"'

will be subjected. Thus, in the construction of any engine,

the weight and pressure on every part should be investigated,

and the strength apportioned accordingly. All levers, for

instance, should be made strongest where they are most

stx-ained : viz, levers of the first kind, at the fulcrum ; levers

of



\ PROMISCUOUS EXERCISES. S45

of the second kind, where the weight acts ; and those of the

third kind, where the power is apphcd. The axles of wheels

and pulleys, the teeth of wheels, also ropes, &c, must be made
stronger or weaker, as they are to be more or less acted on.

The strength allotted should be more than fully competent
to the stress to which the parts can ever be liable ; but with-

out allowing the surplus to be extravagant : for an over ex-

cess of strength in any part, instead of being serviceable,

would be very injurious, by increasing the resistance the ma-
chine has to overcome, and thus encumbering, impeding, and
even preventing the requisite motion ; while, on the other

hand, a defect of strength in any part will cause a failure

there, and either render the whole useless, or demand very

frequent repairs.

PROBLEM 40.

To ascertain the Strength of Furious Substances.

The proportions that we have given on the strength and
stress of materials, however true, according to the principles

assumed, are of little or no use in practice, till the compara-
tive strength of different substances is ascertained : and even
then they will apply more or less accurately to different sub-

stances. Hitherto they have been applied almost exclusively

to the resisting force of beams of timber ; though probably
no materials whatever accord less with the theory than timber
of all kinds. In the theory, the resisting body is supposed
to be perfectly homogeneous, or composed of parallel fibres,

equally distributed round an axis, and presenting imiform re-

sistance to rupture. But this is not the case in a beam of
timber: for, by tracing the process of vegetation, it is readily

seen that the ligneous coats of a tree, formed by its annual

growth, are almost concentric ; being like so many hollow
cylinders thrust into each other, and united by a kind of me-
dullary substance, which offers but little resistance : these

hollow cylinders therefore furnish the chief strength and
resistance to the force which tends to break them.

Now, when the trunk of a tree is squared, in order that it

may be converted into a beam, it is plain that all the ligneous

cylinders greater than the circle inscribed in the square or

rectangle, which is the transverse section of the beam, are

cut off at the sides ; and therefore almost the whole strength

or resistance arises from the cylindrlc trunk inscribed in the

solid part of the beam; the portions of the cylindric coats,

situated towards the angles, adding but little comparatively

to the strength and resistance of the beam. Hence it follows

that we cannot, by legitimate comparison, accurately deduce

the
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the strength of a joist, cut from a small tree, by experiments

on another which has been sawn from a much larger tree or

block. As to the concentric cylinders above mentioned, they
are evidently not all of equal strength : those nearest the

centre, being the oldest, are also the hardest and strongest;

which again is contrary to the theory, in which they are sup-
posed uniform tliroughout. But yet, after all however, it is

still found that, In some of the most important problems, the

results of the theory and well-conducted experiments coin-

cide, even with regard to timber : thus, for example, the ex-

periments on rectangular beams afford results deviating but

in a very slight degree from the theorem, that the strength

is proportional to the product of the breadth and the square

of the depth.

Experiments on the strength of different kinds of wood,
are by no means so numerous as might be wished : the most
useful seem to be those made by Muschenbroek, Buffon,

Emerson, Parent, Banks, and Girard. But it will be at all

times highly advantageous to make new experiments on the

same subject ; a labour especially reserved for engineers who
possess skill and zeal for the advancement of their profession.

It has been found by experiments, that the same kind of

wood, and of the same shape and dimensions, will bear or

break with very different weights : that one piece is much
stronger than another, not only cut out of the same tree, but

out of the same rod ; and that even, if a piece of any length,

planed equally thick throughout, be separated into three or

four pieces of an equal length, it will often be found that

these pieces require different weights to break them. Emer-
son observes that wood from the boughs and branches of trees

is far weaker than that of the trunk or body; the wood of

the large limbs stronger than that of the smaller ones ; and
the wood in the heart of a sound tree strongest of all ; though
some authors differ on this point. It is also observed that a

piece of timber which has borne a great weight for a short

time, has broke with a far less weight, when left upon it for

a much longer time. V/ood is also w^eaker when green, and
strongest when thoroughly dried, in the course of two or

three years, at least. Wood is often very much weakened by
knots in it ; also when cross-grained, as often happens in

sawing, it will be weakened in a greater or less degree, ac-

cording as the cut runs more or less across the grain. From
all which it follows, that a considerable allowance ought to be
made for the various strength of wood, when applied to any
use where strength and durability are required.

Iron is much more uniform In Its strength than wood. Yet
experiments
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experiments show that there is some difiference arising from
different kinds of ore : a difference is also found not only in

iron from different furnaces, but from the same furnace, and
even from the same melting ; which may arise in a great

measure from the different degrees of heat it has when
poured into the mould.

Every beam or bar, whether of wood, iron, or stone, is

more easily broken by any transverse strain, while ic is also

suffering any very great coirpression enbi ny^ , sc much so

indeed that we have sometimes seen a rod, o: a long lender

beam, when used as a prop or shoar, urged h>nne to such a

degree, that it has burst asunder with a violent spring. Se-
veral experiments have been made on this kind of strain : a

piece of white marble, ~ of an inch square, and 3 inches long,

bore 38 lbs; but v/hen compressed endways with 300 lbs, it

broke with 144-lbs. The effect is much more observable

in timber, and more elastic bodies; but is considerable in all.

This is a point therefore that must be attended to in all ex-

periments ; as well as the following, viz, that a beam sup-

ported at both ends, will carry almost twice as much when
the ends beyond the props are kept from rising, as when the

beam rests loosely on the props.

The following list of the absolute strength of several ma-
terials, is extracted from the collection made by professor

Robison, from the experiments of Muschenbroek and other
experimentalists. The specimens are supposed to be prisms

or cylinders of one square inch transverse area, which are

stretched or drawn lengthways by suspended weights, gra-

dually increased till the bars parted or were torn asunder, by
the number of avoirdupois pounds, on a medium of many
trials, set opposite each name.

1st. Metals.

lbs, lbs.

Gold, cast . . . 22,000 Tin, cast . . : . 5,000
Silver, cast ... 42,000 Lead, cast . . . 860
Copper, cast . . 34-,O00 Regulus of Antimony 1,000
Iron, cast . . . 50,000 Zinc 2,600
Iron, bar . . . . 70,000 bismuth .... 2,900
Steel, bar ... 135,000

It is very remarkable that almost all the metallic mixtures
are more tenacious than the metals themselves. The change of
tenacity depends much on the proportion of the ingredients ;

and yet the
\

. portion which produces the most tenacious

mixture, is diflerent in the different metals. The proportion

of
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of ingredients here selected, is that which produces thff

greatest strength.

2 parts gold with 1

silver ....
5 pts gold, 1 copper

5 silver, 1 copper .

4 silver, I tin

6 copper, 1 tin . .

lbs.

28,000

.50,000

48,500
41,000
G0,000

Brass, ofcopper 8c tin

3 tin, 1 lead

8 tin, 1 zinc . .

4 tin, 1 regul. antim.

8 lead, 1 zinc .

4 tin, 1 lead, 1 zinc

U.S.

5
1
,000

io,':oo

10,000

12,000

4,500
1 3,000

These numbers are of considerable use in the arts. The
mixtures of copper and tin are particularly interesting in the

fabric of great guns. By mixing copper, whose greatest

strength does not exceed 37,000, with tin which does not

exceed COOO, is produced a metal whose tenacity is almost

double, at the same time that it is harder and more easily

wrought : it is however more fusible. We see also that a

very small addition of zinc almost doubles the tenacity of

tin, and increases the tenacity of lead 5 times; and a small

addition of lead doubles the tenacity of tin. These are eco-

nomical mixtures; and afford valuable information to plumb-

ers for augmenting the strength of v^ater-pipes. Also, by
having recourse to these tables, the engineer can proportion

the thickness of his pipes, of whatever metal, to the pressures

they are to suffer.

2d. Woods, &c.

lbs. lbs.

Locust tree . . . 20,100 Tamarind .... 8,750

Jujeb 18,500 Fir 8,330

Beech, Oak . . . 17,300 Walnut .... 8,130
Orange .... 15,500 Pitch pine . . . 7,650

Alder 13,900 Quince .... 6,750

Elm 13,200 Cypress .... 6,000

Mulberry . . . 12,500 Poplar 5,500

Willow .... 12,500 Cedar 4,880
Ash 12,000 Ivory 16,270
Plum 11,800 Bone 5,250

Elder .... 10,000 Horn 8,750

Pomegranate . , 9,750 Whalebone . . . 7,500

i.cmon .... 9,'250 Tooth of sea-calf . 4,075

It is to be observed that these numbers express something
more than the utmost cohesion; the weights being such as

will very soon, perhaps, in a minute or two, tear the rods

asunder. It may be said in general, that i of these weights

will sensibly impair the strength, after acting a considerable

\vhile, and that one-half is the utmost that can remain per-

manently
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nianently suspended at the rods with safety; and it is this

last allotment that the engineer should reckon upon in his

constructions. There is however considerable difference in

this respect : woods of a very straight fibre, such as fir, will

be less impaired by any load which is not sufficient to break

them immediately. According to Mr. Emerson, the load

which may be safely suspended to an inch stjuare of various

materials, is as follows.
lbs.

Iron 76,400
Brass 35,600

Hempen rope . . 19,(i00

Ivory 15,700

Oak, box, yew, plumb 7,850

Elm, ash, beech . C,070

Walnut, plum . . 5,360

lbs.

Red fir, holly, elder,

plane . \ . . 5,000

Cherry, hazle . . 4,760
Alder, asp, birch,

willow .... 4,290
Freestone .... yi4
Lead 430

civts.

22d'-

9d}

He gives also the practical rule, that Iron . . .

a cylinder whose diameter is d inches, Good rope

loaded to i of its absolute strength, Oak . . .

will carry permanently as here aa- Fir ....
nexed.

Experiments on the transverse strength of bodies are easily

made, and accordingly are very numerous, especially those

made on timber, being the most common and the most in-

teresting. The completest series we have seen is that given

by Belidor, in his Science des Ingenieurs, and is exhibited in

the following table. 1'he first column simply indicates the

number of the experiments ; the column b shows the breadth

of the pieces, in inches ; the column d contains their depths;

the column / shows the lengths ; and colunin lbs shows the

weights in pounds v/hich broke them, when suspended by
their middle points, being the medium of 3 trials of each

piece ; the accompanying words, fixed and loose denoting

whether the ends were firmly fixed down, or simply lay loose

on the supports.

N".
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By comparing experiments 1 and 3, the strength appears

proportional to the breadth.

Experiments 3 and 4 show the strength to be as the breadth
mukipHed by the square of the depth.

Experiments 1 and 5 show the strength nearly in the in-

verse ratio of the lengths, but with a sensible deficiency in

the longer pieces.

Experiments 5 and 7 show the strength to be proportional

to the breadth and the square of the depth.

Experiments 1 and 7 show the same thing, compounded
-with the inverse ratio of the length j the deficiency of which

is not so remarkable here.

Experiments 1 and 2, and experiments 5 and 6, show the

increase of strength, by fastening down the ends, to be in the

proportion of 2 to 3 ; which the theory states as 2 to 4, the

difference being probably owing to the manner of fixing.

Mr, Buffon made numerous experiments, both on small

bars, and on large ones, which are the best. The following

is a specimen of one set, made on bars of sound oak, clear of

knots.

Length,
feet.
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their lengths in feet being in the first column. The numbers

in the OLher columns, are the pounds weight which brake the

pieces.
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Mr. Banks, an ingenious lecturer on natural philosophy,

has made many experiments on the strength of oak, deal, and
iron. He found that the worst or weakest pieceof dry heart

of oak, 1 iAch square, and 1 foot long, broke with 602 lbs,

and the strongest piece with 971 lbs ; the worst piece of deal

broke with 16 4- lbs, and the best with 690 lbs. A like bar of

the worst kind of cast iron 2 190 lbs. Bars of iron set up in

positions oblique to the horizon, showed strengths nearly

proportional to the sines of elevation of the pieces. Equal

bars placed horizontally, on supports 3 feet distant, bore 6|-

cwt j the same at 2^ feet distance broke only with 9 cwt.

—

An arched rib of '29^ feet span, and 1 1 inches high in the

centre, supported 99icwt ; it sunk in the middle 3^ inches,

and rose again f on removing the load. The same rib tried

without abutments, broke with 55 cwt.—Another rib, a seg-

ment of a circle, 29i feet span, and 3 feet high in the middle,

bore lOOy cwt, and sunk 1^ in the middle. The same rib

without abutments, broke with 64y cwt.

Mr. Banks made also experiments at another foundry, on

like bars of 1 inch square, each yard in length weighing 9lbs,

the props at 3 feet asunder.

The 1 St bar broke with 963 lbs.

The 2d ditto 953
The :;d ditto 994
Bar made from the cupola, broke with . . 864

Bar equally thick in the middle, but the ends

shaped into a parabola, and weighed 6j?^lbs,

broke with •
. . 874

From these and many other experiments, Mr. Banks con-

cludes, that cast iron is from 3j to 4i times stronger than

oak of the same dimensions, and from 5 to 6^ times stronger

than deal.

Some Evamplesfor Practice.

The theory, as has been before mentioned, is, That the

strength of a bar, or the weight it will bear, is directly as

the breadth and square of the depth divided by the length.

So that, if b denote the breadth of a bar, d the depth, I the

length, and W the weight it will bear •, and the capitals B, d,

L, w denote the like quantities in another bar ; then, by the

rule — : w : : — : w, which gives this general equation

hiVijW = BD'lWy from which any one of the letters is easily

found, when the rest are given.

Now, if we take, for a standard of comparison, this expe-

riment of Mr. Banks, that a bar of oak an inch square and a

foot
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Foot inlengih, lying on a prop at each end, and its strength,

or the utmost weight it can bear, on its middle, 660 lbs ; here
^— !,</=!, /=!, 10 = 660 ; these substituted in the above

equation, it becomes LW — GoObd^, from which any one of

the four quantities L, w, B, d, may be found, when the other

three are given, when the calculation respects oak timber.

But for fir the Hke rule will be lw =:: 410BD^i and for iron

LW — 2640BD'-.

Exam. 1. Required the utmost strength of an oak beam,

of 6 inches square and 8 feet long, supported at each end, or

the weight to break it in the middle ?

Here are given b = 6, D = 6, L = 8, to find w r:

= — =: 6bO X 3 X 9 = 17820 lbs.
L 8

Hxam. 2. Required the depth of an oak beam, of the

same length and strength as above, but only 6 inches

breadth ?

Here, as 3 : 6 : : 3G : d^ = 72, theref. d = 'v/72 = 8-485

the depth.

This last beam, though as strong as the former, is but little

more than 4 of its size or quantity. And thus, by making
joists thinner, a great part of the expense is saved, as in the

modern style of flooring, &c.

Exam. 3. To determine the utmost strength of a deal

joist of 2 inches thick and 8 inches deep, the bearing or
breadth of the room being 12 feet ?—Here B = 2, d = 8,

L = 1 2 ; then the rule Lw = 440bd^ gives w zz
440XBXD* 440x2x64' 440x32 ,^^^„= — := —-— =r 469 J lbs.

L 12 3

Exam. 4. Required the depth of a bar of iron 2 inches
broad and 8 feet long, to sustain a load of 20,000 lbs.?— Here
B = 2, L n 8, and w = 20,000, to find D from the equation

,,,..r. > - LW 8x20000 1000 „^ ^LW = 2040BD , viz, D" = —7— = r=: —— = 30*3.' ' 2640b 2640 x 2 Sd
>^^ -'>

and D = y/30'3 = 51 inches, the depth.

Exam. 5. To find the length of a bar of oak, an inch
square, so that when supported at both ends it may just break
by its own weight ?—Here, according to the notation and
calculation in prob. 36, Z rr 1, a? = | of a lb, the weight of
1 foot in length, and u = GGOlbs. Then L =
I'/—~ =*/3:301 — 57'43 feet, nearly.

Exam. 6. To find the length of an iron bar an inch square,

that it may break by its own weight, when it is supported at

Vol. III. A A both
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both ends.—Here as before / = 1, w = 3 lbs nearly tlie

weight of 1 foot in length, also u = 2640. Therefore L =
l^Z±^ r: 41-97 feet nearly.

w

Note. It might perhaps have been supposed that this last

result should exceed the preceding one : but it must be con-
sidered that while iron is only about 4 times stronger than
oak, it is at least 8 times heavier.

Exam. 7. When a weight w Is suspended from e on the

arm of a crane abcde, it is required to find the pressure at

the end D of the spur, and that at b against the upright

post AC.

Here, by the nature of the lever, —w = ^'J ' CD

the pressure at d in the vertical direction

I>

DF : but this pressure in df is to that in db .'K
CE CE . DB Ijjlj'jd

as DF to DB, VIZ, DF : DB :

:

CD
w —

w

DK . CD

the pressure in db ; and again, DB : fb or

CE . DB CE CE

DF

\r

B

lA

CD

FB.

-^\T : —w = —w the pressure against e in direction
. CD DF BC *•

Thus, for example, if CE = 16 feet, BC r: 6, cd = 8,
, CE.RD 16.10 „ ,^

BD = 10, and w =3 tons: then w =: —-r- X 3 = 10
' BC . CD 0.8

tons, for the pressure on the spur db. Also —w ~ ~ X

3 = 8 tons, the force tending to break the bar ac at £.

PROBLEM 41.

To determine the circumstances of Space, Penetration,

Velocitj/, ayid Time, arising from a Ball moving with a

Given Velocity, and stiiking a Moveable Block of Wood, or

other substance.

Let the ball move In the direction ae passing through the
centre of gravity of the block B, Impinging on the point c j

and when the block has moved through the space CD in

r.onsequence of the blow, let the ball have penetrated to the

depth DE.

Let
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liet B = the mass or matter in the block,

I) = the same in the ball,

s = CD the space moved by the block,

X = i)E the penetration of the ball, :ind thercf>

s H- X = CE the space described by the ball,

a = the first velocity of the ball,

V = the velocity of the ball at E,

M = velocity of the block at the same instant,

£ = the time of penetration, or of the motion,

r = the resisting force of the wood.

Then shall — be the accelerating force of the block,

and — the retarding force of the ball.

Now because the momentum mc, communicated to the

block in the time /, is that which is lost by the ball, namely,

— bv, therefore Bii = — bv, and BU =: — bv. But when
-J = a, u zz

I therefore, l>y correcting, bu == b(^a — v) ; or

the momentum of the block is every where equal to the mo-
mentum lost by the ball. And when the ball has penetrated

to the utmost depth, or when u =: v, this becomes b?^ =: h

{a — ii), or ^6 = (b + h)u J that is, the momentum before

the stroke, is equal to the momentum after it. And the ve-

locity communicated will be the same, whatever be the re-

sisting force of the block, the weight being the same.

Again, by theor. 6, Forces, vol. 2, it is iC- zz —^, and

— v^ = -— X (^ + ^)> or rather, by correction^ a^ — v^ =

-^ (^ 4- .r). Hence the penetration or x zz 2™.

And when v = iiy by substituting u for v, and bm* for 4^?'^,

the greatest penetration becomes --——
j and this again,

by writing ab for its value (b + b)Uy gives the greatest pene-

tration a: = -—; 7- = —- x (1 r). Which is barely

equal to —- when the block is fixed, or infinitely great ; and

is always very nearly equal to the same -r— when b is very

great in respect of b.

a'2 -

A A 2 An4
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'
: s -jr X, or B -{- b : b : : X : s,And theref. u + ^ : E+ 2i : ;

Exam. AVhen the ball is iron, and weighs 1 pound, it

penetrates elm about 13 inches when it moves with a velo-

city of 1500 feet per second, in which case,

32284 nearly.
b 4gx 4 X KJjL X i| 193 X 13

When B = 500lb, and b — I ; then u
al _ 1500

B + b
~ 501

feet nearly per second, the velocity of the block.

BuS
__ 500 X 9

Agr
~~Also s — AOTi P^^' °^ ^ ^°°^' °^ 77-4x 16,Lx 32284.

i 2

of an inch, which is the space moved by the block when the

ball has completed its penetration.

And t=~ =

2s + !2,r

3 1

7771
—

-. = ^TT, part of a second, or
4bl5X .i 692 ^

'26

6 + 13 . 231 _ 1

~ "69

4614 ~ 12
part of a se-

t) 1500 6.231 . 1500

cond, the time of penetration.

PROBLEM 42.

Tofind the Velocity and Time of a Heavy Body dcsccyid-

ing down the Arc of a Circle , or xihraliiig in the Arc by a

Linefixed in the Centre.

Let D be the beginning of the descent,

c the centre, and a the lowest point of the

circle ; draw DE and pq perpendicular to

AC. Then the velocity in p being the same
as in Q by falling through eq, it will be

v= '2\/{g X EQ)=8'/(rt — .r), when rt= AE,

jr = AQ.

But the flux, of the time ^ is = , and ap rr

where r z=. the radius AC. Theref. ^ =: -— X —
-± X -t = "^'^ X '

»

16 V(—^)xV(''-) 16
^(«.-.«)xV(l-V)

where d = 2r the diameter.

^ ; -^d i . , ,
T , 1 . 3.%' 1 . 3 . 5x3

by developing l ^ //(I ^), or (I- -^)~'^j in a series.

But
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But the fluent of -—^
: is — x arc to radius la and

2r
Ters. x\ or it is the arc whose rad. is 1 and vers. -^ : which

' a

call A. And let the fluents of the succeeding terms, without

the coefficients, be b, c, d, e, &c. Then will the flux, of any-

one, as Q, at n distance from A, be q = a.'"A = xv^ which

suppose also = the flux, of b? — dx"~^^^{ax — a:') = ^p —
d{n - l)xx''-''V(ax - x') - dxx"-^ x ^"''~'',. = ^p —

cix X —77—

—

= bv —d(n — ijap + dnx-p.

Plence, by equating the coeflicients of the like terms,

, 1 , 2«-l
, ('2'? - Dap -2«''-V(''*'- ''')

a = — ; b = a : and Q = ^ .

n In in

Which being substituted, the fluential terms become ^g X

1 OA - 'i^/'ycix - .t'2) 1 . 3 Sob - 'i.x^[(ix -_£)_ __\~ ^
2d ' i STlo^ 4

^^ • c
"~ ^^^' ^^'^''^ fluents will

be found by art- 32 pa. 233.

But when x — a, those terms become barely ^ ^— x

subtracted, and x taken = 0, there arises for the whole
time of descending down da, or the corrected value of i =

When the arc is small, as in the vibration of the pendu-
kim of a clock, all the terms of the series may be omitted
after the second, and then the time of a semi-vibration I is

- 15708 r , , . a . .ti r ,

nearly = —-—\/— X (I + -^)- And theref. the times

of vibration of a pendulum, in different arcs, are as Sr + ^,

or 8 times the radius added to the versed sine of the arc.

If D be the degrees of the pendulum's vibration, on each

side of the lowest point of the small arc, the raJius being r,

the diameter d, and 3" 14 16 ~ p; then is the length of that

pro pda T> 1 t • • (c ^

arc A = --- = —x- Uut the versed sine in terms or the
1 bO J60

arc is a = -^ -rrrz + &c = —
- — ^tt; + &c. Therefore

2r 24/3 d 3rf3

T =
a-
-

M^ + &c = — - ^^- + &c, or only -^,
the
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the first term, by rejecting all the rest of the terms on ac*

count of their smallness, or — = "'
nearly = ——• This

value then being substituted for - or — in the last nearo d ^r

value of the time, it becomes ( = —-— v'
o X (1 + ^T--rr)

nearly. And therefore the times of vibration in different

small arcs, are as 52524 + D", or as 52524 added to the

square of the number of degrees in the arc.

Hence it follows that the time lost in each second, by vi-

brating in a circlej instead of the cycloid, is ; and con-

sequently the time lost in a whole day of 24 hours, or 24 X
60 X 60 seconds, is ^D^ nearly. In like manner, the seconds

lost per day by vibrating in the arc of A degrees, is y A*.

Therefore, if the pendulum keep true time in one of these

arcs, the seconds lost or gained per day, by vibrating in the

other, v^'ill be ^(d^ — A"). So, for example, if a pendulum

measure true time in an arc of 3 degrees, it will lose 1 If se-

conds a day by vibrating 4 degrees ; and 26^ seconds a day

by vibrating 5 degrees ; and so on.

Atfid in like manner, we might proceed for any other curve,

as the ellipse, hyperbola, parabc-la, &c.

SchoUiim. By comparing this with the results of the pro-

blems 13 and 14 in vol. 2, it will appear that the times in

the cycloid, and in the arc of a circle, and in any cliord of

the circle, are respectively as the three quantities

1, l+^&Cand:;^-,

or nearly as the three quantities 1, 1 + ^j 1-27324; the

iirst and last being constant, but the middle one, or the time

in the circle, varying with the extent of the arc of vibration.

Also the time in the cycloid is the least, but in the chord the

greatest', for the greatest value of the series, in this prob.

when a — r, or the arc ad is a quadrant, is 1'18014; and

in that case the proportion of tlie three times is as the num-
bers 1, !• 18014, 1-21324. Moreover the time in the circle

approaches to that in the cycloid, as the arc decreases, and

they are very nearly equal when that arc is very small.

PROBLEM



PROMISCUOUS EXERCISES. 359

l>llOBLEM 43.

To find the Time and Velocity of a Chain, consisting of
^ery small linksy descending from a smooth horizontal plant,

•

the Chain being 100 inches Imig, and 1 inch of it hanging

off the Plane at the Commencement of Motion.

Put <z x= 1 inch, the lenorth at the beginning

;

/ = 100 the whole length of the chain
;

X = any variable length off the plane.

Then x is the motive force to move the body^

and— z=y the accelerative force.

Hence vv ^z Igfs zi Ig % -j- x x —
Isx'

The fluents give v^ z=. —^— . gi^jt i, = vv^hen x ~ a,

J.! d"! x' a'

theref. by correction, v^= 2g x—r-,andt'= V{^g ^ —r—

)

the velocity for any length .r. And when the chain just

quits the pliiin, x = /, and then the greatest velocity is

'*-"% //^ 1002-12 ,386x9999
V'(2,-X-^)rrv/(2 x 193 x _^^) r= ^—^^^j^^—

=

196*45902 inches, or IG'SI 1585 feet, per second.

Again / or — =r v/ — x ———r 5 the correct fluent of

which \st—'/~ X log.
'^———Z^^ the time for any

length .r. And when x = I =: 100, it is ^ = '^~^^^^^°Z*
100 + /''Q^^ r

^
= 2-69676 seconds, the time when the last of the

chain just quits the plane.

PROBLEM 44.

Tofind the Time and Velocity of a Chain, of very small

Links, quitting a Pulley, by' passing freely over it: the

whole Length being 200 Inches, and the ofie End hanging

2 Inches below the other at the Beginning.

Put a = 2, / = 200, and x = bd any variable ^
difference of the two parts ab, ac. Then

^ =/, and TV or 2gfi = 2g . -^ . {x = -~~.

Hence the correct fluent is z;* = ^ X —-— , and

V ~ \^{g X —7— ), the general expression for the

Q
D

B

veloc.
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veloc. And when x zz. /, or when c arrives at A, it A
is ., == '/{g X ^^) = V(193 X ^,—) = ^
,(386 X '-^^^^) = ^''' ^ '''' = 196-4.5902

inches, or 16-oil 585 feet, for the greatest velocity

when the chain just quits the pulley.

Again, ^or — = ^ = ^--- x —. And the cor-

rect fluent is ^ =: ^~ x log. ——^^— , the general ex-

pression for the time. And when x =. /, it becomes t =

.100
,

100 + ^9999 ^ ^^^r,^ J 1 t 1

V T^ X log. p = 2'696/D seconds, tuc whole

time when the chain just quits the pulley.

So that the velocity and time at quitting the pulley in this

prob. and the plane in the last prob. arc the same ; the dis-

tance descended 99 being the same in both. For, though

the weight / moved in this latter case, be double of what it

was in the former, the moving force x is also double, because

here the one end of the chain shortens as much as the other

end lengthens, so that the space descended ^r is doubled,

and becomes .r ; and hence the accelerative force — or y is

the same in both ; and of course the velocity and time the

same for the same distance descended.

PROBLEM 45.

Tofml the Number of Vibrations made hij two WeightSf

connected by a -ccrijfine Thread, pnsdngfreely over a Tack
or a Pulley, while the less Weight is drawn up to it by the

Descent of the heavier Weight at the other End; the Extent

of the vibrations being Indefinitely Small.

Suppose the motion to commence at equal dis- ^
tances below the pulley at b ; and that the weights

~

are 1 and 2 pounds.

Put a = AB, half the length of the thread ;

b = 39i- inc. or 3|| feet, the second's pend.

a; = BE' = Bw, any space passed over ;
:

Z = the number of vibrations.
"^

Then = /" — i- Is the accelerating force.

And Vience v or /4^/of — x/'igfv, and ^ or - = ~^^'
But,

Q

vv
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But, by the nature of pendulums, >^{(i ± .?) \ -^/h w 1 vibr.

:

t/ the vibrations per second made by either weight,
a ± -v

namely, the longer or shorter, according as the upper or

under si en is used, if the threads were to continue of that

length for 1 second. Hence, then, as

a±x ^ a±x 4gf t^[ax ± x^)

the fluxion of the number of vibrations.

Now when the upoer sign + takes place, the fluent Is

,:=o^± X L^^^f^ = v/4- X 1. '!ll^^l!!^±^. And

when a' rr a, the same then becomes 2; =r ^ —— x log.

1 + v/2 = V^^ X log. 1 + v/2 = -v/-^' X log. 1 + V2 =
•6S8,511, the whole number of vibrations made by the de-
scending Aveisfht.

But when the lower sign, or — , takes place, the fluent Is

b 2,v

Vp-. X arc to rad, 1 and vers. -— . Which, when x = a,
4^y a

gives ip,/— = 3-14.16 X ^-^ = -_ X ^/^ =:

1 •22I09 1 , the whole number of vibrations made by the lesser

or ascending weight.

Schol. It is evident that the whole number of vibrations.

In each case, is the same, whatever the length of the thread

is. And that the greater number is to the less, as 1-5708 to

the hyp. log. of I + ^/2.

Farther, the number of vibrations performed in the same
time t, by an invariable pendulum, constantly of the same

length a, is v'— = '781190. For, the time of descending
SI

the space ct, or the fluent of ^ = —7—7 , when .r = a, is / =

V—f- And, by the nature of pendulums, Va : ^yh : :

1 vibr. : \/ — the number of vibrations performed in 1 se-

cond : hence l" : t : : %/— : Ia/— — V -^, the constant
" ^ a aJ

number of vibrations.

So that the three numbers of vibrations, namely, of the

ascending, constant, and descending pendulums, are propor-

tional to the numbers I'jIOS, 1, asid hyp. log. 1 + y' 2, or

as l-oTOS, 1, and 'SSIST; whatever be the length of the

thread.

PnOBLEM
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PROBLEM 46.

To determine the Circumstuncts ofthe Ascent and Descent

of two unequal Weights ^ suspended a: the two Ends (f a
Thread, passing over a Pulley: the freight nf the Thread
and of the Pulley being considered in the Solution.

Let / r:: the whole lergth cf the thread; .
rf7\)^

a rr the weight of the same ;
'^'^

b =: kiv the dif. of lengths at first

;

d — vf — w the dif. of the two weights
; |^..|y

e zz ^ weight applied to the circumference,

such as to be equal to its whole wt. and

friction reduced to the circumfe'-ence ;

5=w4-5P-f-fl + c the sum of the weights moved.

Then the weight of b is —, and d—r- is the moving force

at first. But if ^" denote any variable space descended by w,
or ascended by rr, the difference of the lengths of the thread

will be altered 2.r ; so that the difference will then be ^ — 2x,

and its weight —7-^ j conseq. the motive force there will be

a -—a r= , and theref. ——; — J the ac-

celerating force there. Hence then vv = '^gfx = 2gx x
dl- ob + 'lnx in , r i •

i
• i .

dl-ah + ax
; the fluents or which give v^ — 4gjt: x »

ox V =:2>y~ X */{ex + x^) the general expression for the

velocity, putting e z=. . And when x = 3, or vv becomes

as far below w as it was above it at the beginning, it is barely

vrr 2V— for the velocity at that time. Also, when <7,

the weight of the thread, is nothing, the velocity is only

2-/—, as it ought.

Again, for the time, ^ or — = -'V— X —r. r ; the

fluents of which give / = V— x log.——~—— the ge-

neral expression for the time of descending any space x.

And if the radicals be expanded in a series, and the log.

of it be taken, the same will become

^ = ^-^ X V~~ X (1 - f + JS &c).
ng dl—ab ^ 6e 40e* '

Which therefore becomes barely V -^ when a, the weight

of the tliread, is nothing; as it ought.

PROBLEM
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PROBLEM 47.

To find the Velocity and Time of Vibration of a small
iVcight^ fixed to the middle of a Line, or fine Thread void

ff Gravity, and stretched bij a given Tension; ihn Exicnt
of the V ibration being very small.

Let Z = AC half the length of the thread ;

a = CD the extent of the vibration i

X =r CE any variable distance from c
;

w = wt. of the small body fixed to the middle
;

w = a wt. which, hung at each end of the thread,

v/ill be equal to the constant tension at each end,

acting in the direction of the thread.

Now, by the nature of forces, ae : ck : : w the force in

direction ea : the force in direction EC. Or, because Ac is

nearly zz ae, the vibration being very small, taking ac in-

stead of ae, it is AC : CE : : w : — the force in ec arising

from the tension in ea. Which will be also the same for

that in eb. Therefore the sum is -— rr the whole motive

force in kc arising from the tensions on both sides. Conse-

quently ~-— ~y" the accelerative force there. Hence the

equation of the iluxions w '2gjs = —f— ; and the flus.

o igVfx^ -n 1 1 • • 4pwa^
, ,V r=. —

. but when x =. a, this is—-—, and should

be = ; theref. the correct fluents are v' = 4^g\v x ~*

^5 _ ^.'2

and hence v = V(4-gw x ) the velocity of the little
to.'

'

body K' at any point E. And when x = 0, It is v = 2a^^
for the greatest velocity at the point c.

Now if we suppose n) = I grain, w = 51b troy, or 28800
grains, and 2/ = ab = 3 feet ; the velocity at c becomes

8 X 16,1 X 28800
, .. ,

aV Y
=1111 \a. So that

if a = -,'cinc. the greatest veloc. is 9tt ft. per sec.

if a = 1 inc. the greatest veloc. is 92^1 ft. per sec.

if a = 6 inc. the greatest veloc. is 555^'^ ft. per sec.

To
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Iw
To find the time f, it is ^ or — =1 k\/~ X

y(a- - x-'Y

zol

Hence the correct fluent is t =: {^/— x arc to cosine — and

radius 1, for the time in de. /Vnd when a: = Oj the whole

time in DC, or of half a vibration, is •7854"/— ; andconseq.

the time of a whole vibration thi-ough dcI is 1*5708 4/—

.

Using the foregoing numbers, namely a'.= 1, w =
28800, and 2/ = 3 feet ; this expression for the time gives
1111-

' — 353f, the number of vibrations per second. But if

W = 2, there would be C50 vibrations per second •, and if

ty = 100, there would be Soiv vibrations per second.

PROBLEM 48.

To determine the same as in the last Problem, xc'^hen the

Distance cd hears some sensible Proportion to the Loigth
AB ,• the Tension of the Thread however being still supposed
'« Constant Quantitij.

Using here the same notation as in the last problem, and
taking the true variable length ae for AC, it is ae or eb : ce :

:

2w : = —-^-——r- the whole motive force from the two

equal tensionsw in AE and eb ; and theref. ~— X rr f

is the accelerative force at f. Theref. the fluxlonal equation

3s vv or 2gjs " -^ X
a/(''' + •^')

; and the fluents v^
8w/r

Sw-r^ ^y (l'- + x-^. But when x ~ a, these are = ^—^ x —
8\vjV [I- + u'^) ; therefore the correct fluents are r" =.

['/(/' + a-) - '^{l- -\. x-]— ^-^ X {ad - ae). And

hence v = \/[—— x (ad — ae)] the general expression for

the velocity at e. And when e arrives at Cj it gives the

greatest
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greatest velocity there = -/["t^ X (ad — ac)]. Which,

when w r= 28800, -^ = l, 21 — 3 feet, and cd = 6 inches

or i afoot, is a/ (8 X 2SS0O x 16t't X
^"^~''^

) ~ 5481 feet

per second. Which came out 555t-5 in the last problem, by
using always AC for ae in the value of

J'.
But when the ex-

tent of the vibrations is very small, as iV of an inch, as it

commonly is, this greatest velocity here will be \/8 x 28800
X 16tV X ttIst = 9^ nearly, which in the last problem
was 9tV nearly.

To find the time, it is i or — == V--— X

making c = ad = ^/ (/* + a'-). To find the fluent the easier,

multiply the numer. and denom.bothby V{c-\- '\/(^^+ -^'^)]>

so shall l = V^ X ^~f_^.^ X VLc + Vil' + -^0].

Expand now the quantity \/[c + \/(l^ + -v-)] in a series.

and put d= c+ L so shall t =: V -f- X , .,

'"

,, ( 1 + t

-r

—

-.V^ -] .r^ 1 x Sec). Now

the fluent of the first term —-— is = the arc to sine —
and radius 1 , which arc call A ; and let P, Q^be the fluents of

any other two successive terms, without the coefficients, the

distance of a from the first term a being 7i ; then it is evi-

dent that a = x-p = .v-"A, and p = .v^^" - 'a. Assume theref.

Q = b? — e.r-"'
- ' "/(a^ — .t -) ; then is q or ,v^p =bp — {2n — 1)

\f . ,s+ -J-, r-= bp - (2n - [)ea-p+ {2n - l)ex'p +

f.r-p =bp — {2n — l)ea^p -j- ^jiex'-p. Then comparing the

coefilcients of the like terms, we find 1 = Qen, and b =

{2n— l)m''j from which are obtained e = --jand/^rr^^-j^a',

Consequently an: —, the general

equation between any two successive terms, and by means of
which the series may be continued as far as we please. And
hence, neglecting the coefBcients, putting A = the first term,

namely the arc whose, sine is —, and b, c, d, &c, the follow-

ing
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1
• • f 11 .

"-A — *'a/("'^ — *"^)

ing terms, the series is as tollows, A H —
j.

H r — ccc. iXowwhen .r= 0,

this series = ; and when .v ~ a, the series becomes \p -\-

— + 1

f~ 2cc, where p rr 3-1416, or the series is

So that, by taking in the coefficients, the general time of

passing over any distance de will be

<v/ X ipx (1 4 7T, • T^" rr— • ;; « occ, — arc sin.^ «W^ ^^ ^^ 'itli ^ 32 ft 3 2.4 '

"«
' 4di

'

2
' "^

32fK3
'

4
^^*

And hence, taking z = 0, and doubling, the time of a

whole vibration, or double the time of passing over cD will

, , k{c + 1) ,. 1 , , 2f/+/ 1.5,
be equal to ipV i^' X (1 +-, . ia--^^^.—-a^ +
4ri= + 2r//+P 1.3.5 « 40rf3 + 8rf'/+ l'Jrf/«H-5/5 1 . 3 . 5 . 7 o^ »

;^— ,— . (r . a^&c.)
12s«3/- 2.4.6 2-d-iSd'l- 2 . 4 . G . 8

'

Which, when a = O, or c =: /, becomes only ipv'— , the

same as in the last problem, as it ought.

Taking here the same numbers as in the last problem,

viz, l = ly a = ^, w =2, w = 28800, g = 16-pV ; then

ip ^-{llA — -0040514, and the series is 1 + -006762 -

'000175 + -000003 &c = 1-006590; therefore '004051 4-

x

1-006590 = -0040965 =^ is the time of one whole vi-

bration, and consequently 245| vibrations are performed in

a second ; which were 250 in the last problem.

PROBLEM 49.

//, is proposed to determine the Velocity, and the Time of Vi^
bration, of a Fluid in the Arms of a Canal or bent Tube,

Let the tube abcdef have its two A^

branches AC, ge vertical, and the lower ^

part CDE in any position whatever, the ^

whole being of a uniform diameter or
width throughout. Let water, or quick-
silver, or any other fluid, be poured in,

rill it stand in equilibrio, at any hori-

c\—

i

I Jo
p

F

&

zontal
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zontal line bf. Then let one surface be pressed or pushed

down by shaking, from B to c, and the other will ascend

through the equal space fg ; after which let them be per-

mitted freely to return. The surfaces will then continually

vibrate in equal times between AC and eg. The velocity

and times of which oscillations are therefore required.

When the surfaces are any where out of a horizontal line,

as at p and Q, the parts of the fluid in qdr, on each side,

below aR, will balance each other ; and the weight of the

part in pr, which is equal to 2pf, gives motion to the v/hole.

So that the weight of the part 2pf is the motive force by

which the whole fluid is urged, and therefore —^ is the° whole wt.

accelerative force. Which weights being proportional to

their lengths, if / be the length of the whole fluid, or axis of

the tube filled, and a = fg or bc ; then is -^ the accelera-

tive force. Putting theref. .v = gp any variable distance, v the

velocity, and t the time ; then PF = a — a:*, and— = j
the acceleratlve force ; hence vv or Q.gfs =. ~ (ax — xx) ;

the fluents of which give v^ = -j-(.'2a.v — x"), and v =

V'(4^ X
""''''

.) is the general expression for the velocity

at any term. And when .r = a, it becomes v z=. 2a^ — for

the greatest velocity at b and f.

Again, for the time, we have tov—=:^V~ x

the fluents of which give t — {"/— x arc to versed sine

—

S a

and radius 1, the general expression for the time. And
when X = a, it becomes t =z^p^ —{or the time of moving

from G to F, p being := 3*1416 ; and consequently |/?v'

—

the time of a whole vibration from g to e, or from c to a.

And which therefore is the same, whatever ab is, the whole
length / remaining the same.

And the time of vibration is also equal to the time of the
vibration of a pendulum whose length is ^l, or half the length
of the axis of the fluid. So that, if the length / be 78|. inches,
it will oscillate in 1 second.

Scholium. This reciprocation of the water in the canal, is

nearly similar to the motion of the waves of the sea. For
the



S68 PROMISCUOUS EXERCISES.

the time of vibration is the same, however short the branches
are, provided the whole length be the same. So that when
the height is small, in proportion to the length of the canal,

the motion is similar to that of a wave, from the top to the
bottom or hollow, and from the bottom to the top of the
next wave ; being equal to two vibrations of the canal ; the
whole length of a wave, from top to top, being double the
length of the canal. Hence the wave will move forward by
a space nearly equal to its breadth, in the time of two vibra*

tions of a pendulum whose length is {U) half the length of
the canal, or one-fourth the breadth of a wave, or in the
time of one vibration of a pendulum whose length is the

whole breadth of the wave, since the times of vibration are

as the square roots of their lengths. Consequently, waves
whose breadth is equal to 39-^ inches, or 3^^ feet, will move
over 3^31 feet in a second, or 103^ feet in a minute, or nearly

2 miles and a quarter in an hour. And the velocity of greater

or less waves will be increased or diminished in the subdu-
plicate ratio of their breadths.

Thus, for instance, for a wave of 18 inches breadth, as

^/39| : 39| : : -v/lB : v^(3?|- X IS) = |V3l3 = 26*5377
the velocity of the wave of 18 inches breadth.

PROBLEM 50.

To dclermme the Time of emptying any Ditch, or Inun-
dation, h\c, by a Cut or iSolch,Jrom the Top to the Bottom

of it.

Let r = AB the variable height of water at

any time

;

i-
— AC the breadth of the cut

;

d = the whole or first depth of water

;

A = the area of the surface of the water

in the ditch
;

g = 16A feet.

The velocity at any point D, is ?.s \^bd, that is, as the ordi-

nate DE of a parabola bec, whose base is AC, and altitude ab.

Therefore the velocities at all the points in ab, are as all the

ordinates of the parabola. Consequently the quantity of

water running through the cut abgc, in any time, is to the

quantity which v/ould run through an equal aperture placed

all at the bottom in the same tinie, as the area of the para-

bola ARC, to the area of the parallelogram abgc, that is, as

2 to 3.

But ^/g : v/.r : : 2g : 2\/gx the velocity at AC ; therefore

:i X 2Vg-v X bx ~ ^.bx»^/gx is the quantity discharged per

second
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second through abgc ; and consequently — is the ve-

locity per second of the descending surface. Hence then

-tljlAl.
: _ ;t : : l" : -P^ = i the fluxion of the time of

descending.

Now when A the surface of the water is constant, or the

ditch is equally broad throughout, the correct fluent of this

fluxion gives / = ^-^ X -^^^^-^^-^-^ for the general time of

sinking the surface to any depth x. And when x = 0, this

expression is infinite ; which shows that the time of a com-

plete exhaustion is infinite.

But i{d=9 feet, /> = 2 feet, a = 21 X 1000 = 21000,

and it be required to exhaust the water down to -rV o^ *

foot deep ; then x = -j?^, and the above expression becomes

X = 14400", or just 4 hours for that time.
4 X 4ij f

' •'

And if it be required to depress it 8 feet, or till I foot depth

of water remain in the ditch, the time of sinking the water

to that point will be 43' 38".

Again, if the ditch be the same depth and length as be-

fore, but 20 feet broad at bottom, and 22 at top ; then the

descending surface will be a variable quantity, and, by prob.

16 vol. 2, it will be —^~ X 20000 j hence In this case the

r , . -3Ai , -500 90 + x . ,

flux, of the time, or > becomes —— x ——x : the

-.,.,. ^ 1000 ^,90-r 90-d,r
correct fluent of which is ^ = -— X (

— -r-) tor

the time of sinking the water to any depth x.

Now when x = 0, this expression for the complete ex-

haustion becomes infinite.

But if . . X = 1 foot, the time t is 42' 56"^.

And when x =-^ foot, the time is 3'^ 50' 28"i.

PROBLEM 51.

To determine the Time offilling the Ditches of a Fortifi-

cation 6 Feet deep with Watery through the Sluice of a Trunk
of % Feet Square^ the Bottom of which is level with the Bot^

torn of the Ditchy and the Height of the supplying fVater is

9 Feet above the Bottom of the Ditch.

Let ACDB represent the area of the vertical sluice, being a

square of 9 square feet, and ab level with the bottom of the

ditch. And suppose the ditch filled to any height AE, the

surface being then at kf.

Vol. III. B B Put
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Put a = 9 the height of the head or supply
j

^ = 3 = AB =: AC

;

f-

A = the area of a horizontal section of ^
the ditches

;

| {

,r = « — AE, the height of the head a .>

above ef.

Then Vg : x^x : : Qg : Q\/gx the velocity with which the

water presses through the part aefb ; and theref. 2\^g-v x
AEFB = 2by/gx[a — x) is the quantity per second running

through AEFB. Also, the quantity running per second

through ECDF is Q^Vgx x ItEcdf = ^^b\/gx{b — a -\- x)

nearly. For the real quantity is, by proceeding as in the last

prob. the difference between two parab. segs. the alt. of the

one being .t', its base b, and the alt. of the other a— b\ and

the medium of that dif. between its greatest state at ab,

where it is tVad, and its least state at CD, where it is 0, is

nearly -J-^ed. Consequently the sum of the two, or -lb\/gx

(a -\- lib — .r) is the quantity per second running in by the

whole sluice acdb. Hence then -^h'/gx x = -y is

the rate or velocity per second with which the water rises in

the ditches ; and so r : —x::l":tzr: = -—— x -——
the fluxion of the time of filling to any height ae, putting

<.• = a + 116.

Now when the ditches are of equal width throughout, a

is a constant quantity, and in that case the correct fluent of

this fluxion IS ^ =~- X log. (-^p-^^ X -^^) the ge-

neral expression for the time of filling to any height ae, cr

a — x, not exceeding the height AC of the sluice. And

when xr=.KQ-r:a — bznd suppose, then t = x lo?.

(^£i±^ a/^ - ' Î\ is the time of filling to CD the top of

the sluice.

Again, for filling to any height GH above the sluice, x de-

noting as before a — ag the height of the head above gh,

2 Vgx will be the velocity of the water through the whole

sluice AD : and therefore ^2.b^\/gx the quantity per second,

and ^^—^——v the rise per second of the water in the ditches j

consequently v : — x : : l" : t — - ~ = 3^- X -^ the

general fluxion of the time j the correct fluent of which,

being
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belng v/hen x = a — b ~ d, is t = 7r7~W^^ "" ••/•^) the

time of filling from CD to Gii.

Then the sum of the two times, namely, that of filling

from AB to CD, and that of filling from CD to Gii, is

T7. L 7 7- log. (^ \- .
^ ^ ,, ) ] for the

whole time required. And, using the numbers in the prob.j

this becomes —— \- ^ -\ x 1. (--——^„ . —~ )1

= 0*03.)77277a, the time in terms of A the area of the

length and breadth, or horizontal section of the ditches.

And if we suppose that area to be 200000 square feet, the
time required will be 7154", or 1** 59' 14;".

And if the sides of the ditch slope a little, so as to be a
little narrower at the bottom than at top, the process will be
nearly the same, substituting for A its variable value, as iii

the preceding problem. And the time of filling will be very
nearly the same as that above determined.

PROBLEM 52.

But if the Water, fy'om which the Ditches are to be filled,

he the Tide, zi'hich at Low IVatcr is belozc the Bottom of the
Trunk, and rises to 9 Feet above the Bottom of it by a regu-
lar Rise of One Foot in Half an Hour ; it is re(/uiied to

ascertain the Time of Filling it to C Feet high, as before in

the Last Prohknn.

Let ACDB represent the sluice ; and when the tide has risen

to any height gh, below CD the top of the sluice, without
the ditches, let ef be the mean height of the water within.

And put 6 = 3 = AB r= AC

;

A = horizontal section of the ditches ; ;
r

.r = AG

;

Cf -
j
P

ji, — Ac.

Then ^/g : v/r-G '. : 2g : 2x/g(s — z) the velo-

city of the water through aefb ; and

Vg : a/eg : : 4<g':yV'^(.i' — ^) the mean vel. through eghf;
theref. 2bz\/g(x—z) is the quantity per sec. through aefb ;

and ~b(x — z)i/g(x — z) is the same through eghf
;

conseq. ^b^g x (2-r + z)V{-v — z) is the whole through
aghb per second. This quantity divided by the surface a,

gives ^^-r-^ x (2.r + :)^/(.r— z) = v the velocity per second

B B 2 with
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with which ef, or the surface of the water in the ditches,

rises. Therefore

V : z : : \ : t — — = -^- x
2V^ (i!x + z)y(*:-z)*

But, as GH rises uniformly 1 foot in 30' or 1800'', there-

fore 1 : AG : : 1800" : iSOO.r = t the time of the tide rising

through AG ; conseq. t = 1800;? = rr-r ^ ;:;

—

t~7 \* ^^

7)iz = (2.r + z)y/(x—z) . X is the fluxional equa. expressing

the relation between .r and z j where w = . ^ . = -^
or i 3f|]^ when a = 200000 square feet.

Now to find the fluent of this equation, assume z =

Ax^ + BT^ + CJ ^ + Dx ' &c. So shall

/, V 4 A * a' + 4b Z a3+4ab + 8c^t* q,^V[x- z) = .r-^ - ~x^ - -—a^
j-^

r &c,

2X + Z = 2X + A*^ + BX^ + C^ * &C,

(2.r + z)v/(^-z)x = Qx^Jc • - ^^^^ - tll^x'^^x &c,

JL -^ -5. I*

and wi = ^mAx^'Je + /wbx^x+ V»2Cr**+ v^widx'^ * &c.

Then equate the coefficients of the like terms,

so shall and consequently

Iw;a=2, a =
bt;;»

Ime = 0, B = 0,
24

VmD = - |A' - |AB, D =- -g^,

&c ; Sec,

Which values of A, b, c, &c, substituted in the assumed

value of z, give

_ 4 4 24 V _iL. 't Sr .

or 2 = -- x^ very nearly.

And when j: = 3 = ac, then ^ == '886 of a foot, or lOJ

inches, = AE, the height of the water in the ditches when
the tide is at cD or 3 feet high without, or in the lirst hour

and half of time.

Again,
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Again, to find the time, after the above, when
EF arrives at CD, or when the water in the oj

ditches arrives as high as the top of the sluice.

The notation remainiiig as before,
then '2hz\/ii{x — z) per sec. runs through af, j^ b
and ll>{S~z)^/g{x— z) per sec. thro' ed nearly;
therefore {bVg x{\'^ + z^^/ {x— z) is the whole per second

through AD nearly.

conseq.^1- X (12 + t)v/(-t' - 2) = v is the velocity per

second of the point e ; and therefore

V '. k :: \"
: i-- =^ x ——~—r = 1800;^, or

mk~{\'l^z)\/{x-z) . X, where ???— - J" =23A nearly.

1 1 L A
Assume z = A.r' + et' + c.r' + d^'' &c. So shall

-/{x -z)-x^-.-x^ —x^ x^ &e ;

12 + ^ = 12 -I- A^'^ 4- B.r^ 4- cx^ &c;

(12+ -I). V{x-z) . .i=i2A-6Az'^x-(|A^+6B)A&c;
t A i

'ink zz rmxx^x-\- ^mBx^x -{- -mcx^'x &c,

Then, equating the like terms, 8cc, we have

3m

.V +
6m* ' 3m

3 24 96 G4
, „

A = —, B = 7>c=: 7-J-, D = —7- nearly, &c,

8 4 24 , ,
96 T .

fi4 , „
Hence z = —x — ^x^ + ---^x + -^-r .r^ &c.

Or Z — —x^ nearly.

But, by the first process, when x-=:3, z — 'S86 ; which
substituted for them, we have z n -886, and the series

—
1*63

J
therefore the correct fluents are

Z - -886 = - 1 -63 + —x^ ~ —x^ &c,W 7)1'' '

or z + '744 = —x^ X* &c.

And when £ — 3 — ac, it gives x n 6*369 for the height

of the tide without, when the ditches are filled to the top of
the sluice, or 3 feet high ; which answers to 3*^ 11' 4 ".

Lastly, to find the time of rising the remaining 3 feet

above the top of the sluice ; let

J" = CG
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ar = CG the height of the tide above CD, & iK

Z — CE ditto in the ditches above CD
; e-;

-^

and the other dimensions as before. cj 1»

Then \/g : ^jlg : : 2g : 2\/g{x - 2;)'= the

velocity with which the water runs through the
|

I

whole sluice ah ; conseq AD x 2^/gyx: — z) = ^
IS ^/g{x-z) is the quantity per second running through the

sluice^, and ——\/{x -^ z) = v the velocity of z, or the rise

of the water in the ditches, per second ; hence v : i^ : :
1" :

/= — = -^ X -—^— = iSOOx, and )nz = i^(x-z) Is

the fluxional equation ; where m rr
,^

— j—

*

To find the fluent.

Assume z = A.r' + bx^ + c.i * 4- i>-^''' &c.

^ ± i-

Then X — z = X — ax^ — B.r^ — cx^ Sec,

;c v(a- — z) =: x^ x — ~x x
^
— x x &c,

mz. = ^nAv'x + piBx''^; + picx"-x &:c.

Then equating the like terms gives

^ ~ 3n' ^ - Gn»» ^ - 90# ' ° -8T0«^'
^^•

Hence 2; =: - *' — --*• + ^ttti-v^ — rrTTT*^^ &c.

But, by the second cas?, when z = 0, .v = 3*369, which
being used in the series, it is 1*936; therefore the correct

22 1

fluent is 2: = - 1*936 + —-><' — -^-^^^ Sec. And when
37i b'.*

2; ir: 3j X = 7 ; the heights above the top of the sluice,

answering to 6 and 10 feet above the bottom of the ditches.

That is, for the \vater to rise to the height of 6 feet within

the ditches, it is necessary for the tide to rise to 10 feet withr

out, which just answers to 5 hours ; and so long it would
take to fill the ditches 6 feet deep with water, their horizon-

tal area being 200000 square feet.

Further, when x = 6, then z =. 2*117 the height above

the top of the slui're ; to which add 3, the height of the sluice,

and the sum .VI 17, is the depth of water in the ditches in 4

hours and a half, or \i4\en the tide has risen to the height of

.9 feet without the ditches.

Note. In the foregoing problems, concerning the efflux

of
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of water, It is taken for granted that the velocity is the same
as that which is due to the whole height of the surface of

the sui-plying water: a supposition which agrees with the

principles of ihe greater number of authors : though some
malce tiie \clrcity to be that which is due to the half height

only : and othe -s make it still less.

Also 'n some places, where the difference between two
parabolic segments was to be taken, in estimating the mean
velocity of the water through a variable oritice, 1 have used

a near mean value of the expression ; which makes the ope-

ration of finding the fluents much more easy, and is at the

same time sufficiently exact for the purpose in hand.

We may further add a remark here concerning the method
of finding the fluents of the three fluxional forms that occur

in the solution of this problem, viz, the three forms fni, —
(2.r + z)^/{x - z)x, and mk = (12 + z)\/{s - z)i, and
viz zz v^{,.r — z)x, the fluents of which are found by assum-

ing the fluent /?;; in an infinite series ascending in terms of

X with indeterminate coefficients A, B, c, &c, which coeffi-

cients are afterwards determined in the usual way, by equat-

ing the corre.spondi''g terms of tv/o similar and equal series,

the one series denoting one side of tlie fluxional equation,

and the other series the other side. By similar series, is

meant when they have equal or like exponents ; though it

is not necessary that the exponents of all the terms should

be like or pairs, but only some of them, as those that are not

in pairs will be cancelled or expelled by making their coeffi-

cients = or nothing. Now the general way to make the

two series similar, is to assume the fluent z equal to a series

in terms of i", either ascending or descending, as here

z z=L x' -\- x''^^ {- x' ^''' &c for ascending,

or £ = x"" + x''-^ -\- x''—^^ &c for a descending

series, having the exponents y, v + ^, ;• ± 2^, &c in arith-

metical progres ion, the first term r, and common difference

S't wiihout the general coefficients A, B, c, &c, till the values

of the exponents be dete"mlned. In terms of this assumed
series for z, find the values of the two sides of the given

fluxional equation, by substituting in it the said series instead

of 2 ; then put the exponent of the first term of the one side

equal that of the other, which will give the value of the first

expoiient r; in like manner put the exponents of the two
2d terms equal, which will give the value of the common
difference s ; and hence the whole series of exponents ?,

r ± .y, /• Hb 25, ik.c, becomes known.

Thus, for the last of the three fluxional equations above

mentioned, viz, mk ~ -y/(.i - z)x, or only « — Vf.r — z,u-;

having
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having assumed as above z = .r'' + ^'^'^' &c, and taking the

fluxion, then z — x''-^ x -\- x''^'-^x -f- &c, omitting the

coefficients ; and the other side of the equation V{x — z]x zz

a/{x — x'' — x''-^' &c) r: ^^i — x^- ix Sic. Now the expo-

nents of the first terms made equal, give r — 1 = t, theref.

r = I -\- Y — i'i ^"tl those of the 2d terms made equal,

give r-{-s— 1=/-— X, theref. 5— 1 —~~, and 5 = 1
— i = i;

conseq. the whole assumed series of exponents r, r + s,

r 4- 2s, &c, become {, *, I, Sec, as assumed above in pa. 374.

Again, for the 2d equation mz, or i = (12 + z)V{x— z)x

= {a -\-z)'^ [x — z)x ; assuming z r= ^' + 4^'' + ' &c as before,
_L I

xHxenzzzx'-'X \-
X'' + ' -' ic Scc,andv/(vr — z);f= x^x — x'' —"^x

&c, both as above ; this mult, by a -f z or a-\-x''-\-x'^ + ' &c,

gives ax ^x — ax''--^x &c : then equating the first exponents

gives /'— J =1 or ;=|, and ;'+ 5--l=/-— i-, or5=l— yr:^;

hence the series of exponents is 4j *> is &,c, the same as the

former, and as assumed in pa. 373.

Lastly, assuming the same form of series for z and % as in

the above two cases, for the 1st fluxional equation also, viz,

7nz—{2x + z)\/{x-z)x: then^/ (x — z')x=x' x — x'- ""x &c,

-which mult by 2x-\-z, gives 2x^x — x'' + ^x &,c : here equat-

ing the first exponents gives /' — 1 = i or r — f , and equat-

insj the 2d exponents gives r -\- s — 1 = ? + ^, or 5 =: 4 »

hence the series of exponents in this case is ^, f, V j &c, as

used for this case in pa. 372. Then, in every case, the gene-

ral coefficients A, B, c, &c, are joined to the assumed terms

.r'', x'+'f &c, and the whole process conducted as in the

three pages just referred to.

Such then is the regular and legitimate way of proceeding,

to obtain the form of the series v/ith respect to the expon-

ents of the terms. But, in many cases we may perceive at

sight, without that formal process, what the law of the ex-

ponents will be, as I indeed did in the solutions in the pages

above referred to ; and any person with a little practice may
easily do the saine.

PROBLEM 53.

To determine thefall of the Water in the Arches ofa Bridge.

The effects of obstacles placed in a current of water, such

as the piers of a bridge, are, a sudden steep descent, and an

increase of velocity in the stream of water, just under the

arches, more or less in proportion to the quantity of the ob-

struction and velocity of the current : being very small and

hardly perceptible where the arches are large and the piers

few
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few or small, but in a high and extraordinary degree at

London-bridge, and some others, where the piers and the

sterlings are so very large, in proportion to the arches. This

is the case, not only in such streams as run always the same
way, but in tide rivers also, both upward and downward, but

much less in the former than in the latter. During the time

of flood, when the tide is flowing upward, tlie rise of the

water is against the under side of the piers ; but the difl^er-

ence between the two sides gradually diminishes as the tide

flows less rapidly towards the conclusion ofthe flood. When
this has attained its full height, and there is no longer any
current, but a stillness prevails in the water for a short time,

the surface assumes an equal level, both above and below
bridge. But, as soon as the tide begins to ebb or return

again, the resistance of the piers against the stream, and the

contraction of the waterway, cause a rise of the surface above
and under the arches, with a fall and a more rapid descent in

the contracted stream just below. The quantity of this rise,

and of the consequent velocity below, keep both gradually

increasing, as the tide continues ebbing, till at quite low
water, when the stream or natural current being the quick-

est, the fall under the arches is the greatest. And it is the

quantity of this fall which it is the object of this problem to

determine.

Now, the motion of free running water is the consequence
of, and produced by the force of gravity, as well as that of
any other falling body. Hence the height due to the velo-

city, that is, the height to be freely fallen by any body to

acquire the observed velocity of the natural stream, in the
river a little way above bridge, becomes known. From the
same velocity also will be found that of the increased current
in the narrowed way of the arches, by taking it in the reci-

procal proportion of the breadth of the river above, to the
contracted way in the arches ; viz, by saying, as the latter is

to the former, so is the first velocity, or slower motion, to

the quicker. Next, from this last velocity, will be found
the height due to it as before, that is, the height to be freely

fallen through by gravity, to produce it. Then the differ-

ence of these two heights, thus freely fallen by gravity, to

produce the two velocities, is the required quantity of the
waterfall in the arches ; allowing however, in the calculation,

for the contraction, in the narrowed passage, at the rate as

observed by Sir I. Newton, in prop. ;<6 of the 2d book of the
Principia, or by other authors, being nearly in the ratio of 25
to 21. Such then are the elements and principles on which
the solution of the problem is easily made out as follows.

Let
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Let b = the breadth of the channel in feet

;

V = mean velocity of the water in feet per second

;

c = breadth of the waterway between the obstacles.

Now G5 : 21 : : c : --c, the waterway contracted as above.
2.) '

And—-c \h '.'. V : ^r, the velocity in the contracted way.

Also 32^ t;^ : : 16 : g'^-u^ height fallen to gain the velocity r.

And 32^ : C§^Y; •• 16 : (^^X -V^'% ditto for the vel. ~ v.

'25A t'' 7'*

Then (7-)'' X -r; — tt is the measure of the fall required.
^'21c 64 b4 ^

Or [(.77-)" — 1] X -4 is a rule for computing the fall.

Or rather —^-r—— x v^ very nearly, for the fall.

Exam. 1. For London-bridge.

By the observations made by Mr. Labelye in 174G,

The breadth of the Thames at London-bridge is 926 feet

;

The sum of the waterways at the time of low-water is 236 ft;

uN'Iean velocity of the stream just above bridge is 3|- ft. per sec.

But under almost all the arches arc driven into the bed great

numbers of what are called dripshot piles, to prevent the bed
from being washed away by the fall. Thcoe dripshot piles

still further contract the Avaterways, at least ~ of their mea-
sured breadth, or near 39 feet in the whole; so that the

waterway will be reduced to VJl feet, or in round numbers
suppose 200 feet.

Then b - 926, c = 200, 7; = 3^, = '-.%

]-44i'^-c^ 1217616-40000 ,_
Hence—^;r— = -74^0^6— = *^-

And v^= ^-^^- 10 h-
o

Theref. -46 x IOVt =4'-G3 ft.= 4 ft. 7i- in. the fall required.

By the most exact observations made about the year 1736,

the measure of the fall was 4 feet 9 inches.

Exam. 2. For TVestminster-bridge.

Though the breadth of the river at Westminster-bridge is

1220 feet
;
yet, at the time of the greatest fall, there is water

through only the 1 3 large arches, which amount to but 820
feet; to which adding the breadth of the 12 intermediate

piers, equal to 174 feet, gives 994 for the breadth of the

river
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river at that time ; and the velocity of the water a little above

the bridge, from many experiments, is not more tlian 2~ ft.

per second.

Here then b = 994, c = 820, v := 2'^ = |.

TT l--12/'*-c» 1403011 - 07'2400 ^,^^^
H^"^^-^- = .4 X 67240U = -01^22.

Theref. -01722 x 5-^-^ = '0872 ft. = 1 in. the fall required;

which is about half an inch more than the greatest fall

observed by Mr. Labelye.

And, for Blackfriar's-bridge, the fall will be mucl\. the

same as that of Westminster.

F I N I S.
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